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Preface

Divide each chapter into three parts:
1) Time and Place
2) Personalities
3) Mathematical Topic(s)

Chapter - Ancient Mathematics
Time and Place: Prehistory, Egyptian, Babylonian
Personalities: none
Topics: Bases

Chapter - Early Greek

Chapter - Analytic Geometry
Time and Place: France early 17th century
Personalities: Descartes, Fermat, Pascal
Topic: Analytic Geometry, Tangents
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CHAPTER I

Bases

1. Introduction

Consider the difference between the words number and numeral, as they are
used by mathematicians.

Webster’s New World dictionary defines number as a symbol or word, or a
group of either of these, showing how many or which one in a series. This is
clearly not what we mean when we refer to rational or real numbers. Yet, the
alternate definitions are even further from our usage. Perhaps closer would be an
idea corresponding to a quantity. Let’s take that for now (although it certainly
seems to exclude complex numbers).

Webster’s does a better job with the second word, defining numeral as a
figure, letter, or word, or a group of any of these, expressing a number. So if a
number is an idea, a numeral is an expression of an idea.

Our standard way of writing numbers depends on the choice of 10 as a base;
this is called the decimal system. For example, the number eight thousand six
hundred forty two divided by twenty five is written in decimal as

8642
25

= 345.68 = 3(102) + 4(101) + 5(100) + 6(10−1) + 8(10−2).

However, the choice of ten is arbitrary, and other cultures have made other
choices.

In this note, we explore how to express numbers in differing bases, and
discover an interesting fact about radix expansions in alternate bases.

1



2 I. BASES

2. Integer Expansion Algorithm

The property of the integers which is pivotal is understanding bases is the
way an integer breaks down into a quotient and remainder when it is divided by
another integer. We state the result we use.

Proposition 1. Division Algorithm
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = mq + r and 0 ≤ r < m.

We call q the quotient and r the remainder.
Recall that a polynomial is a function of the form

f(x) =
k∑

i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ akx
k,

where the coefficients ai are selected from some prespecified set. We will use
the division algorithm to show how to express an integer n as a polynomial in
b, where b is the base. That is, for b, n ∈ Z with with b ≥ 2, we find f as above
with and 0 ≤ ai < b such that f(b) = n.

Lets first consider how we compute f(b). The naive way to evaluate the
polynomial f at a given value for x involves evaluating each monomial separately
and adding the values together. This requires k additions and

∑k
i=1 i = k(k+1)

k
multiplications.

However, we may factor the polynomial thusly:

f(x) = a0 + x(a1 + x(a2 + · · ·+ x(ak−1 + x(ak)) . . . )).

Evaluating this at the same x requires k additions and k multiplications.

Proposition 2. Integer Expansion Algorithm
Let b, n ∈ Z with b ≥ 2. Then there exists a unique polynomial

f(x) =
k∑

i=0

aix
i

with integer coefficients such that
(1) f(b) = n;
(2) 0 ≤ ai < b, with ak > 0.

We call the coefficients ai the base b digits of the number n. We may compute
these as follows. Let n ∈ Z; for simplicity assume n is positive. The division
algorithm states that n = bq+r for some q, r ∈ Z with 0 ≤ r < b. That 0 ≤ r < b
states that r is a digit in base b.

Set q0 = n, q1 = q, and r0 = r so that the above equation becomes

q0 = bq1 + r0.

Then inductively compute
qi = bqi+1 + ri.

Since the qi’s are positive and decreasing, this process eventually ends, say at
the kth stage, so that

qk = bqk+1 + rk with qk+1 = 0;
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at this point, rk = qk. If we plug this back into the previous equation qk−1 =
bqk +rk−1, we see that qk−1 = brk +rk−1, which we rewrite as qk−1 = rk−1 +brk.
If we then take this and plug it back into its predecessor and rearrange, we obtain
qk−2 = bqk−1 + rk−2 = rk−2 + b(rk−1 + brk). Next, and in the same manner,
we find that qk−3 = rk−3 + b(rk−2 + b(rk−1 + brk)). Continuing this process, we
eventually arrive at

n = q0 = r0 + b(r1 + b(r2 + b . . . (rk−1 + brk) . . . )).

Rewritten in standard polynomial form, using summation notation, this becomes

n =
k∑

i=0

rib
i.

In shortened notation, the base b numeral representing the number n is written

n = (rkrk−1 . . . r1r0)b.

That is, the digits of n written in base b are the remainders upon successive
division by b.

3. Radix Expansion Algorithm

The expression of a real number in base b is called its base b radix expansion.
We show how to find this for a real number between 0 and 1; combine this with
the integer expansion algorithm to find the base b expansion of any real number.

Definition 3. A power series is a function of the form

f(x) =
∞∑

i=0

aix
i,

where ai ∈ C.

For example, |x| < 1 and ai = 1 for all i, then the power series is a convergent
geometric series.

Proposition 4. Radix Expansion Algorithm
Let z ∈ R with 0 < z < 1 and b ∈ Z with b ≥ 2. Then there exists a unique
power series

f(x) =
∞∑

i=0

aix
i

with integer coefficients such that
(1) f( 1

b ) = z;
(2) 0 ≤ ai < b for all i;
(3) if ai = b− 1 then there exists j > i such that ai 6= b− 1.

Note that since ai ≤ b − 1 for all i, then f( 1
b ) ≤

∑∞
i=0(

b−1
b )i, which is a

geometric series and therefore is convergent. Thus f( 1
b ) also converges.

Let z ∈ (0, 1). Then 0 ≤ bz0 < b. Multiply z0 by b and take the integer part;
call this p1. Set

z1 = bz0 − p1 with p1 ∈ Z, 0 ≤ p1 < b, and 0 ≤ z1 < 1.
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Repeat this: z2 = bz1 − p2, z3 = bz2 − p3, and so forth. Inductively, take zi and
produce pi+1 and zi+1 such that

zi+1 = bzi − pi+1 with pi+1 ∈ Z, 0 ≤ pi+1 < b, and 0 ≤ zi+1 < 1.

The base b radix expansion of z is the series

z =
∞∑

i=0

pi
1
bi
.

For the valiant reader, we explain why the series above converges to z. To
do this, we show that the difference between the z and the partial sums of the
series becomes as small as we want as we add additional terms. Such proofs
often begin with the phrase “let ε > 0”; this means that ε is arbitrarily small,
and we show that the difference eventually becomes less than ε.

Let ε > 0 and select k ∈ N so large that 1
bk < ε. Then zk+1

bk+1 < ε. Solve each
equation zi+1 = bzi − pi+1 for zi to obtain

zi = b−1(pi+1 + zi+1).

Rewind all this by substituting each such equation into the previous one:

zk = b−1pk+1 + b−1zk+1;

zk−1 = b−1(pk + b−1pk+1) + b−2zk+1;
zk−2 = b−1(pk−1 + b−1(pk + b−1pk+1)) + b−3zk+1;

and so forth, until eventually

z = z0 = b−1(p1 + b−1(p2 + b−1(. . . b−1(pk + b−1pk+1) . . . ))) + b−(k+1)zk+1.

Thus

z −
k∑

i=0

pi
1
bi

=
zk+1

bk+1
< ε,

which shows the convergence we desire.

4. Rational Expansion Property

Let z ∈ Q, and for simplicity assume that 0 < z < 1. Then z = m
n for some

m,n ∈ N with m < n such that gcd(m,n) = 1; this last condition guarantees
that n is as small as possible.

We may obtain the base b radix expansion for z,

z =
∞∑

i=0

pi
1
bi
,

by repeated use of the division algorithm; this is the normal process of division,
in base b, dividing n into m. Since m < n, we must first multiply m by b; then
the quotient will be p1 and the remainder will be an integer which is less than
n:

bm = np1 + r1.

Next we multiply r1 by b and divide, to get

br1 = np2 + r2.

Inductively find pi and ri such that

bri = npi+1 + ri+1.
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Now at each stage, ri < n, so eventually two of remainders will be the same; let
k be the smallest integer such that

rk = ri

for some i < k. Then pi+j = pk+j for j = 1, . . . , k− i, and this pattern continues
to repeat. We call this a radix expansion whose repeating part starts after the
ith place and has length k − i.

On the other hand, if z =
∑∞

i=0 pi
1
bi is a radix expansion whose repeating

part starts after the ith place of length k − i, then (bk − bi)z is an integer, and

z =
(bk − bi)z
bk − bi

expresses z as a rational number.
Together, we see that

Proposition 5. Rational Expansion Property Let z ∈ R, with 0 < z < 1.
Then the base b radix expansion of z repeats if and only if b ∈ Q. Moreover, if
z = m

n , then the sum of the lengths of the nonrepeating and the repeating parts
of the radix expansion of z is less than or equal to n.

If the repeating part of the base b radix expansion of z consists of a single
repeating zero, we say that it terminates.

5. Regular Numbers

Definition 6. Let n ∈ Z with n ≥ 2. We say that n is base b regular if the base
b radix expansion of its reciprocal terminates.

Proposition 7. Let n ∈ Z with n ≥ 2. Then n is base b regular if and only if n
is a product of powers of the prime divisors of b.

Proof. We prove both directions of the implication.
(⇒) Suppose that n is base b regular and that p is a prime divisor of n. We

show that b is a prime of divisor of b, so that all primes in n are in b, and n must
be the product of prime divisors of b.

Since n is base b regular, 1
n has a finite base b radix expansion, say of length

i. Then bi

n is an integer, and n divides bi. That is, bi is a multiple of n, so every
prime divisor of n must also be a prime divisor of bi, and therefore of b itself.

(⇐) Suppose that n is a product of powers of the prime divisors of b. Then
for some k ∈ N, we have n | bk, say nm = bk. Then

1
n

=
m

bk
,

which clearly has a finite base b radix expansion. �
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6. Problems

Problem 1. Convert from base 10 to the given base.
(a) Write 1234 in base 5.
(b) Write 1234 in base 7.
(c) Write 1234 in base 20.

Problem 2. Convert to base 10.
(a) (1234)5
(b) (1234)7
(c) (1234)20

Problem 3. Solve the following equations for the positive integers n and b.
(a) n = (13425)b = (4115)2b

(b) n = (1234)b = (532)2b−1



CHAPTER II

Constructibility

Abstract. We discuss the classical Greek notion of constructibility of geo-
metric objects. The reader is invited to obtain a ruler and compass to

perform the exercises and follow the constructions described in the proofs.

1. Construction with Straight-Edge and Compass

The drawings of the ancient Greek geometers were made using two instru-
ments: a straight-edge and a compass.

A straight-edge draws lines. With the straightedge, we are permitted to draw
a straight line of indefinite length through any two given distinct points. The
straight-edge is unmarked; it cannot measure distances.

A compass draws circles. With the compass, we are permitted to draw a
circle with any given point as the center and passing through any given second
point. The compass collapses if it is lifted; we are not a priori permitted to use it
to measure the distance between given points, and draw a circle around another
given point of the same radius.

The straight-edge and the compass have come to be known as Euclidean
tools, although the quest to construct points using them pre-dates Euclid by two
centuries.

2. Construction of Points in a Plane

Let P denote the set of all points in a plane, and let Q ⊂ P .
A line in P is given by Q if there exist two points in Q which lie on P .
A circle in P is given by Q if the center of the circle is in Q, and there exists

a point in Q which lies on the circle.
A point A ∈ P is immediately constructible from Q if one of the following

hold:
(a) A ∈ Q;
(b) A is the point of intersection of two lines which are given by Q;
(c) A is a point of intersection of a line and a circle which are given by Q;
(d) A is a point of intersection of two circles which are given by Q.
A point A ∈ P is eventually constructible from Q if there exist a finite

sequence of points A1, A2, . . . , An such that A = An and for j = 1, . . . , n, Aj+1

is immediately constructible from Q ∪ {A1, . . . , Aj}.

7
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3. Standard Constructions

Let P denote a plane. For A,B ∈ P , define the following:
• AB is the line in P through A and B;
• AB is the line segment between A and B;
• |AB| is the distance between A and B;
• A−B is the circle through B with center A.

Also, if C,D ∈ P , then AB ‖ CD represents the statement that line AB is
parallel to line CD, and AB ⊥ CD represents the statement that line AB is
perpendicular to line CD.

Let Q be a set of points in the plane. We say that a line segment is con-
structible from Q if its endpoints are constructible from Q

Proposition 1. Given points A and B, it is possible to construct the midpoint
Z of AB.

Construction. We are given A and B.
(a) Let C and D be the points of intersection of circle A − B and circle

B −A.
(b) Let Z be the intersection of line AB and line CD.

Then Z is the midpoint of AB. �

Proposition 2. Given points A and B, it is possible to construct a point Z such
that AB ⊥ BZ.

Construction. We are given A and B.
(a) Let C be the point of intersection of line AB and circle B − A which

is not A.
(b) Let Z be one of the points of intersection of circle A − C and circle

C −A.
Then AB ⊥ BZ. �

Proposition 3. Given noncolinear points A, B, and C, it is possible to construct
a point Z on the line AB such that AB ⊥ CZ.

Construction. We are given A, B, and C. If CB ⊥ AB, let Z = C. Otherwise,
construct Z as follows.

(a) Let D be the point of intersection of line AB and circle C − B which
is not B.

(b) Let Z be the midpoint of BD.
Then AB ⊥ CZ. �

Proposition 4. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that AB ‖ CZ.

Construction. We are given A, B, and C.
(a) Let D be the point of intersection of line AB and the line through C

which is perpendicular to line AB.
(a) Let Z be the point of intersection of the line through A which is per-

pendicular to line AB and the line through C which is perpendicular
to line CD.

Then AB ‖ CZ. �
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4. Transference of Distance

Suppose we are given points A, B, and C. A modern compass is capable
of holding its shape when lifted from the page, so that the distance between A
and B can be measured using the modern compass, and then the compass is set
down on C to draw a circle with center C and radius |AB|. We may call this
process transference of distance. The Euclidean compass is not a priori capable
of this feat; however, we can prove that this construction is possible. We do this
by constructing a parallelogram ABCZ, so that |AB| = |CZ|.

Proposition 5. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that polygon ABCZ is a parallelogram.

Construction. We have points A, B, and C.
(a) Let Z be the point of intersection of the line through C parallel to AB,

and the line through A parallel to BC.
�

5. The Three Greek Problems

As the Greeks investigated what could be accomplished with their Euclidean
tools, three interesting unsolved problems arose.

Greek Problem 1 (Duplication of the Cube). Given a cube, construct a cube
with double the volume.

Greek Problem 2 (Trisection of an Angle). Given an angle, construct an angle
one third as large.

Greek Problem 3 (Quadrature of the Circle). Given a circle, construct a
square with the same area.

We now attempt to make the statements of these problems precise, using
modern notation.

6. Construction of Squares

A square is constructible if its vertices are constructible.
Quadrature is the process of constructing a square whose area is equal to

the area of a given plane region. A plane region with area x is called quadrable
if it is possible to construct a square with area x. By the Proposition 2, this is
equivalent to the the ability to construct a line segment of length

√
x.

The ancient Egyptians estimated areas of certain regions; for example they
estimated that the square on 8/9 of the diameter of a circle is its quadrature.
The area x of the circle with radius r would then be approximately

x ≈
(

8
9
(2r)

)2

=
256
81

r2;

this produces π ≈ 3.16049.
The ancient Greeks concentrated on discovering which regions were precisely

quadrable, via construction with Euclidean tools.
The third Greek problem asks if a given circle is quadrable.
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7. Construction of Angles

Let P denote a plane. For A,B,C ∈ P , define the following:
• ∠ABC is the angle between the line segments AB and BC.

We say that an angle α is constructible from Q ⊂ P if it is possible to
construct points A, B, and C from Q such that α = ∠ABC.

To say that an angle α is given; means that we are given points A, B,
and C such that α = ∠ABC. A bisector of this angle is a line BD such that
∠ABD = ∠DBC; then necessarily ∠ABD = α

2 .

Proposition 6. Given an angle ∠ABC, it is possible to construct a point Z
such that ∠ABZ = ∠ZBC = ∠ABC

2 .

Construction. We are given A, B, and C, with B as the vertex of the angle.
(a) Let D be the point of intersection of BC and B − C.
(a) Let Z be the midpoint of CD.

Then ∠ABZ = ∠ZBC. �

Thus every given angle is bisectable; the second Greek problem asks if every
given angle is trisectable.

8. Construction of Points in Space

Let S denote the set of all points in three dimensional space, and let A,B ∈
S. Although the line through A and B is well defined, there are many circles in
space whose center is A which pass through B. We do not wish to say that all
such circles are constructible.

We say that a plane P ⊂ S is constructible from a set Q ⊂ S if there exist
three noncolinear points in Q which lie on P . Now circles are constructible from
Q if we may construct the plane on which they lie. This gives meaning to the
notion of constructibility of a point in space.

A cube is constructible if it is possible to construct its vertices in space.
The first Greek problem asks if, given a cube in space, it is possible to

construct a cube in space whose volume is double that of the given cube. This
is equivalent to asking if, given a line segment whose length is that of a side of
the original cube, it is possible to construct a line segment whose length is that
of a cube with double the volume.
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9. Construction of Real Numbers

Let P be a plane and let Q ⊂ P . Let x ∈ R. We say that x is constructible
from Q if a line segment whose length is |x| is constructible from Q. Moreover,
we say simply that x is a constructible real number if x is constructible from
{A,B} for some A,B ∈ P with |AB| = 1. Since we may consider a point to be
a line segment of length 0, we consider 0 to be a constructible number.

Proposition 7. Let x, y ∈ R be constructible. Then x+ y is constructible.

Construction. Since x and y are constructible, it is possible to construct line
segments of length |x| and |y|. By Proposition 5, it is possible to construct a
circle of radius |y| centered at any given point.

(a) Let A and B be points such that |AB| = |x|.
Case 1 First assume that x and y have the same sign.
(b) Let Z be the point of intersection of line AB and the circle centered at

B of radius y such that B lies on AZ.
Now AZ is a line segment of length |x|+ |y| = |x+ y|.

Case 2 Next assume that x and y have different signs, and without loss of
generality assume that |x| ≥ |y|.

(b) Let Z be the point of intersection of line AB and the circle centered at
B of radius y such that Z lies on AB.

Now AZ is a line segment of length |x| − |y| = |x+ y|. �

Proposition 8. Let x ∈ R be constructible. Then −x is constructible.

Reason. This follows immediately from the definition. �
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Proposition 9. Let x, y ∈ R be constructible. Then xy is constructible.

Construction. Since 1, x and y are constructible, it is possible to construct line
segments of length 1, |x|, and |y|. Without loss of generality, we may assume
that x and y are positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be a point of intersection of the line through A which is perpen-

dicular to line AB and a circle centered at A of radius 1.
(c) Let D be the point of intersection line through AC and the circle cen-

tered at C of radius y such that C does not lie on AD.
(d) Let Z be the intersection of line BC and the line through D which is

parallel to AB.
Set z = |DZ|; then 4CAB is similar to 4CDZ, so 1

x = y
z , whence z = xy. �

Proposition 10. Let x ∈ R r {0} be constructible. Then 1
x is constructible.

Construction. Since 1 and x are constructible, it is possible to construct line
segments of length 1 and |x|. Without loss of generality, assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at

A of radius 1 such that A is not on BC.
(c) Let D be a point of intersection of the line through A which is perpen-

dicular to line AB and the circle centered at A of radius 1.
(d) Let Z be the point of intersection of line AD and the line through C

which is parallel to line BD.
Set z = |AZ|; then 4ZAC is similar to 4DAB, so z

1 = 1
x , that is, z = 1

x . �

A subset F ⊂ R with at least two elements is a field if it is closed under the
operations of addition, subtraction, multiplication, and division. We have seen
that the set of all constructible real numbers is a field. In particular, all rational
numbers are constructible. Are there any others?
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We show that the set of constructible numbers is closed under square roots;
to do this, we need a couple of lemmas. Let’s assume the geometric facts that
the sum of angles in a triangle is 180◦, and that the base angles of an equilateral
triangle are equal.

Lemma 11 (Thales’ Theorem). An angle inscribed in a semicircle is right.

Proof. Consider a semicircle with center O and diameter BC, and let A be
an arbitrary point on the semicircle; we wish to show that ∠BAC is right.
Now |OA| = |OB| = |OC|, so 4BOA and 4COA are isosceles triangles. Let
α = ∠OBA = ∠OAB and β = ∠OCA = ∠OAC; then ∠BAC = α+ β. Adding
the angles 4ABC we obtain

180◦ = ∠OBA+ ∠OCA+ ∠BAC = α+ β + (α+ β) = 2(α+ β).

Therefore, ∠BAC = α+ β = 90◦. �

Lemma 12. Let ∠ACB be right, and let D ∈ AB such that AB ⊥ CD.
Then 4ACB ∼ 4ADC ∼ 4CDB.

Proof. Two triangles are similar if and only if they have two equal angles. Since
∠ACB = ∠ADC = ∠CDB = 90◦, ∠DAC is shared by two of the triangles, and
∠DBC is shared by two of the triangles, the result follows. �

Proposition 13. Let x ∈ R be a constructible number. Then
√
|x| is con-

structible.

Construction. Since 1 and x are constructible, it is possible to construct line
segments of length 1 and |x|. We may assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at

B of radius 1 such that B is on AC.
(c) Let D be the midpoint of AC.
(d) Let Z be a point of intersection of the line through B which is perpen-

dicular to line AB and the circle D −A.
Let z = |BZ|. Now ∠ZBA = ∠ZBC = 90◦; moreover, ∠AZC is right by Thales
theorem. Therefore 4ZBC is similar to 4ABZ. Thus z

x = 1
z , whence z2 = x,

so z =
√
x. �
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10. Hippocrates Quadrature of the Lune

Proposition 14. Any given rectangle is quadrable.

Construction. Let BCDE form a rectangle. Construct a square as follows:
(a) Let F be the point of intersection of line BE and circle E − D such

that E ∈ BF .
(b) Let G be the midpoint of BF .
(c) Let H be the point of intersection of line DE and circle G − F such

that E ∈ DH.
(d) Let K be the point of intersection of line BE and circle E − H such

that F ∈ EK.
(e) Let L be the point of intersection of the line through H parallel to BE

and the line through K perpendicular to BE.
Then polygon EHLK is a square whose sides have length a = |HE|. Let c =
|BG| = |GH| and b = |GE|. Since 4GEH is right, we have a2 + b2 = c2. Now

area(BCDE) = |BE| × |ED|
= |BE| × |EF |
= (c+ b)(c− b)

= c2 − b2 = a2

= area(EHLK).

�

Let P denote a plane. For A,B,C ∈ P , define the following:
• 4ABC is the triangle whose vertices are A, B, and C.

Proposition 15. A given triangle is quadrable.

Construction. Let BCD form a triangle.
(a) Let E be the point of intersection of line BC and the line through D

which is perpendicular to BC.
(b) Let F be the midpoint of DE.
(c) Let G be the point of intersection of the line through F which is parallel

to BC and the line through B which is perpendicular to BC.
(d) Let H be the point of intersection of line GF and the line through C

which is perpendicular to BC.
Then BCHG form a rectangle whose area is equal to the area of 4BCD. �
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A lune is a plane region obtained by taking the complement of one disk
with respect to another, where the bounding circles of the disks intersect in two
points.

We now produce Hippocrates’ lune. The construction uses three ingredients:
(1) the Pythagorean Theorem;
(2) an angle inscribed in a semicircle is right;
(3) the areas of two circles are to each other as the squares on their diam-

eters.

Proposition 16. Let A and B be points in a plane and let O be the midpoint
of AB. Let C be one of the points of intersection of circle O − A and the line
through O which is perpendicular to line AB. Let D be the midpoint of AC. Let
E be the point of intersection of line OD and circle O − A such that D ∈ OE.
Let F be the point of intersection of line OD and circle D−A such that F ∈ DF .
Then lune AECF is quadrable.

Construction. Our goal is to show that area(luneAECF ) = area(4AOC). Note
that ∠ACB is a right angle, since it is inscribed in a semicircle. Triangles4AOC
and 4BOC are congruent by SAS; thus |AC| = |BC|. Apply the Pythagorean
Theorem to get

|AB|2 = |AC|2 + |BC|2 = 2|AC|2.
Now

area(semicircle AFC)
area(semicircle ACB)

=
|AC|2

|AB|2
=

|AC|2

2|AC|2
=

1
2
.

A quadrant is half of a semicircle, so clearly

area(quadrant ACO) =
1
2
area(semicircle ACB).

Thus
area(semicircle AFC) = area(quadrant ACO).

Therefore

area(luneAECF ) = area(semicircle AFC)− area(region AECD)

= area(quadrant ACO)− area(region AECD)

= area(4ACO).

�
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11. Construction of Regular Polygons

A polygon is regular if each edge has identical length and the angles at each
vertex are equal. For each positive integer n with n ≥ 3, there is exactly one
regular polygon with n edges, up to similarity; is is called a regular n-gon.

Let us first determine the angles in a regular n-gon. It can be inscribed in
a circle, and so has a specific center. Divide the n-gon into n isosceles triangles,
each with adjacent vertices on the n-gon, with the third vertex being the center.
Note that the base angles bisect the angles of the n-gon. Now the sum of the
angles of the triangles which come together at the center is 360◦. Thus the base
angles add to 180◦n−360◦. There are 2n congruent base angles, so each has size

180◦n− 360◦

2n
= 90◦

(
1− 2

n

)
.

The angles of the n-gon consist of two base angles, so each angle of the n-gon is

180◦
(

1− 2
n

)
.

We may canonically inscribe a regular polygon with n edges in the unit circle
of the cartesian plane; its set of vertices is

{(cosα, sinα) ∈ R2 | α =
2πk
n

for k = 0, 1, . . . , n− 1}.

This is a convenient way for us to view a regular polygon: for example, the
length of one side is the distance from (1, 0) to (cosα, sinα), where α = 2π

n . By
the distance formula,

length(edge) =
√

(cosα− 1)2 + (sinα− 0)2

=
√

cos2 α+ sin2 α+ 1− 2 cosα

=
√

2− 2 cosα.

The ancient Greeks, however, had no coordinate system; they attempted to
construct regular polygons using straight-edge and compass.

If a line segment of length r is given, we see that constructibility of a regular
n-gon is equivalent to the constructibility of the real number r cos 360◦

n . We
reserve the right to use this existence criterion later, but we begin with actual
constructions. All of our constructions proceed from a line segment of length r,
and are inscribed in a circle of radius r.

Let O and A be given point with |OA| = r. If we can construct a point
Z such to ∠AOZ = 360◦

n , then we can complete the construction of the other
vertices by intersecting circles centered at a previously constructed vertex of
radius |AZ| with circle O −A. Thus, it suffices to construct such a point Z.
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Proposition 17. A regular triangle is constructible from {O,A}.

Proof. We are given O and A.
(a) Let B be the point of intersection of line OA and circle O − A which

is not A.
(b) Let C be the midpoint of OB.
(c) Let Z be a point of intersection of the line through C which is perpen-

dicular to line OA and circle O −A such that ∠AOZ ≤ 180◦.
Now ∠AOZ = 120◦. �

Proposition 18. A square is constructible from {O,A}.

Proof. We are given O and A.
(a) Let Z be the point of intersection of the line through O which is per-

pendicular to line OA and circle O −A such that ∠AOZ ≤ 180◦.
Now ∠AOZ = 90◦. �

Proposition 19. If a regular n-gon is constructible, then so is a regular 2n-gon.

Construction. We are given O and A.
(a) Let B be a point on the circle O −A such that ∠AOB = 360◦

n .
(b) Let C be the midpoint of AB.
(c) Let Z be the intersection of line OC and circle O −A such that Z lies

on AB.
Now ∠AOZ = 360◦

2n . �

Thus we may construct regular triangles, quadrilaterals, and hexagons. We
would like to know if a regular pentagon is constructible. Investigating this
brings us to the world of the golden ratio.
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12. Problems

For each construction, provide a drawing produced with an actual straight-
edge and compass, together with a list of steps sufficient to reproduce the drawing
(as in the propositions of the text). If you apply the propositions to construct
a midpoint or perpendicular, use a marked ruler or protractor to obtain a more
accurate picture.

Problem 1. For each subset Q of a plane P , find all points that are immediately
constructible from Q.

(a) Q consists of two points
(b) Q consists of the vertices of an equilateral triangle
(c) Q consists of the vertices of an isosceles triangle

Problem 2. Reproduce the drawings which correspond to the construction in-
structions for the following propositions.

(a) Proposition 1 (midpoints)
(b) Proposition 3 (perpendiculars)
(c) Proposition 5 (transference of distance)
(d) Proposition 10 (products of constructible lengths)
(e) Proposition 11 (quotients of constructible lengths)
(f) Proposition 12 (square roots of constructible lengths)
(g) Proposition 13 (quadrature of a rectangle)
(h) Proposition 14 (quadrature of a triangle)
(i) Proposition 15 (quadrature of a lune)

Problem 3. Given circle A − B, construct an equilateral triangle inscribed in
the circle with one vertex at B.

Problem 4. Given circle A − B, construct a regular hexagon inscribed in the
circle with one vertex at B.

Problem 5. Given three noncollinear points, construct the center of the unique
circle which contains the three points.

Problem 6. Given two points, construct a line segment of length
√

3.

Problem 7. Given two points, construct a line segment of length
√

2.

Problem 8. Given two points, construct an angle of 45◦.

Problem 9. Given two points, construct an angle of 75◦.

Problem 10. Given a circle, construct a concentric circle with quadruple the
area.

Problem 11. Given a circle, construct a concentric circle with triple the area.

Problem 12. Given a circle, construct a concentric circle with double the area.



CHAPTER III

The Golden Section

1. The Golden Section

Let A and B be points in a plane. A section of AB is a point C in the
interior of AB. Consider the case where |AC| ≥ |CB|; here are various ratios of
the lengths of the segments that can be explored, for example |AB|

|AC| and |AC|
|BC| .

A golden section of AB is section C of AB which satisfies
|AB|
|AC|

=
|AC|
|BC|

.

In this case, the common value of these fractions is known as the golden ratio;
this clearly does not depend on the length of AB. Thus the golden ratio is a
specific, well-defined number which we denote by the Greek letter ϕ.

Let x = |AB|, y = |AC|, and z = |CB|. In the case of a golden section,
x
y = y

z , so that xz = y2. Moreover, x = y + z, and substituting this into the
previous equation and rearranging, we obtain

y2 − zy − z2 = 0.

Then the quadratic formula gives

y =
z ±

√
z2 + 4z2

2
= z

1±
√

5
2

.

Since
√

5 > 1 and y cannot be negative, one of these solutions is spurious. In
the ratio y

z , the z’s cancel and we obtain

ϕ =
1 +

√
5

2
.

What percentage of a given line segment is a golden section?

y

x
=

1
φ

=
2√

5 + 1
=

2(
√

5− 1)
5− 1

=
√

5− 1
2

≈ 0.62;

also,
z

x
=
x− y

x
= 1− y

x
= 1−

√
5− 1
2

=
3−

√
5

2
≈ 0.38.

19
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2. Recreational Appearances of the Golden Ratio

We see that the golden ratio is the positive solution to the polynomial equa-
tion x2 − x− 1. In particular,

ϕ2 = ϕ+ 1.

Moreover, dividing this equation by ϕ and subtracting 1 from both sides yields
1
ϕ

= ϕ− 1.

So here we have a number whose square is obtained by adding 1, and whose
inverse is obtained by subtracting 1.

Consider the continued square root√
1 +

√
1 +

√
1 + . . ..

Assuming that this pattern is meaningful and represents a number, let x be that

number. Then clearly x > 0. Squaring x =
√

1 +
√

1 +
√

1 + . . . yields

x2 = 1 +
√

1 +
√

1 + . . . = 1 + x.

Thus x satisfies x2 − x− 1 = 0, so x = ϕ.
Consider the continued fraction

1 +
1

1 + 1
1+ 1

1+...

.

Again assume that this pattern represents some number x; we see that

x = 1 +
1

1 + 1
1+ 1

1+...

= 1 +
1
x
.

Multiplying both sides by x gives x2 = x+ 1. Thus again we see that x = ϕ.
Let’s attempt to make this example more precise by restating it using the

language of sequences. We wish to construct a (hopefully convergent) sequence
(an)n∈N such that each an is a fraction representing an approximation of the
above continued fraction, with increasing accuracy, so that the limit would be
the inescapable meaning of the above continued fraction. Let’s begin with 1+ 1

2 ,
and at each stage replace 2 with 1 + 1

2 . We obtain

a1 = 1 +
1
2

=
3
2

a2 = 1 +
1

1 + 1
2

=
5
3

a3 = 1 +
1

1 + 1
1+ 1

2

=
8
5

a4 = 1 +
1

1 + 1
1+ 1

1+ 1
2

=
13
8

and so forth. Can you guess the value of a5? Does this relate to anything else
you have previously seen?
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3. Construction of the Golden Section

We now describe how to construct a golden section of a given line segment.
The idea is to construct a right triangle such that one leg is twice as long as the
other, so that by the Pythagorean theorem, the hypotenuse will contain a square
root of 5.

Proposition 1. A golden section is constructible.

Construction. We are given line segment AB; we construct a point Z between
A and B such that |AB|

|AZ| = |AZ|
|ZB| , or equivalently, such that |AZ| =

√
5−1
2 .

(a) Let D be the point of intersection of line AB and circle A − B which
is not B.

(b) Let E be the midpoint of DA.
(c) Let F be the point of intersection of circle A−B and the line through

A perpendicular to A.
(d) Let Z be the point of intersection of line AB and circle E − F which

lies on AB.
To see that this succeeds, scale our situation so that |AB| = 1. Then |DA| = 1,
so |EA| = 1

2 . Also, |FA| = 1, so by the Pythagorean Theorem, |EF | = |EZ| =√
12 + 1

4 =
√

5
2 . Thus |AZ| = |EZ| − |EA| =

√
5−1
2 . �

4. The Golden Rectangle

Consider a rectangle ABDC such that sides AB and CD are the longer
sides, with length x, and that sides AC and BD are shorter, with length y. Let
E and F lie on AB and CD, respectively, so that AEFC is a square. We call
rectangle ABDC a golden rectangle if rectangle ABDC is similar to rectangle
FEBD.

Suppose that rectangle ABCD is golden, and let z = |EB|; then x = y + z.
By similarity, we have x

y = y
z , which leads to y2 − zy − z2 = 0. We see that E

and F cut AB and BD in a golden section, and x
y = ϕ. Thus a golden rectangle

is constructible as a rectangle build on a golden section.

Proposition 2. A golden rectangle is constructible.

Construction. We are given point A and B which form one side of the rectangle.
(a) Let C be a golden section of AB, with longer side AC.
(b) Let D be the point of intersection of circle A−C and the line through

A which is perpendicular to AB.
(c) Let E be the point of intersection of the line through B which is per-

pendicular to B, and the line through D which is parallel to AB.
Then ABED is a golden rectangle. �
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5. The Golden Triangle

Consider an isosceles triangle 4ABC, where ∠ABC = ∠ACB. Let D be
the point of intersection of line AC and a bisector of angle ∠ABC. We call
4ABC a golden triangle if 4ABC is similar to 4BDC.

Suppose that 4ABC is golden, and let x = |AB| = |AC| and y = |BC|.
Then 4BDC is isosceles, and |BD| = |BC| = y. Also ∠BAC = ∠ABD, so
4DAB is also an isosceles triangle, and |AD| = |BD| = y. Let z = |DC|; then
x = y + z. By similarity, we have x

y = y
z ; therefore, as before, x

y = ϕ.
We may compute the angles of a golden triangle as follows. Let α = ∠BAC

and β = ∠ABC = ∠ACB, so that β = 2α. Then 5α = 180◦, so α = 36◦ and
β = 72◦.

This allows us to compute cos 72◦; construct a right triangle 4AEB by
letting E be the midpoint of BC. Then |BE| = y

2 , so

cosβ =
y

2x
=

1
2ϕ
.

Since 1
ϕ = ϕ− 1, conclude that

cos 72◦ =
−1 +

√
5

4
.

This fact will help us in the construction of a golden triangle.

Proposition 3. A golden triangle is constructible.

Construction. We are given points A and D; we construct points B and C so
that 4ABC is golden, with base AB.

(a) Let B be a golden section of AD, we longer side AB.
(b) Let C be the point of intersection of the circle A − D and the line

through B which is perpendicular to AD.
�
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6. Construction of a Regular Pentagon

We are given two points O and A, and we wish to construct a regular pen-
tagon inscribed in the circle O − A such that A is one of the vertices. If Z is a
vertex adjacent to A, then ∠AOZ = 360◦

5 = 72◦. Thus if we can construct on
OA a section Y such that |OY | = cos 72◦ = −1+

√
5

4 , we will be well on our way
to construction of the regular pentagon. We have seen that this is possible; we
repeat the construction here.

Proposition 4. A regular pentagon is constructible.

Construction. We are given point O and A with |OA| = r. For simplicity and
without loss of generality, assume that r = 1.

(a) Let B be the point of intersection of line OA and circle O − A which
is not A.

(b) Let C be the midpoint of BO.
(c) Let D be a point of intersection of the line through O which is perpen-

dicular to OA, and the circle O −A.
(d) Let E be the point of intersection of line OA and circle C −D.
(e) Let F be the midpoint of OE.
(f) Let Z be the point of intersection of circle O−A and the line through

F which is perpendicular to OA.
Then ∠AOZ = 72◦, so that AZ is the side of a regular pentagon inscribed in
circle O −A. The other sides are now attainable. �
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7. The Golden Pentagram

The diagonals of a regular pentagon are the line segments between non-
adjacent edges. There are five such diagonals; there union is known as the golden
pentagram. This star-shaped figure was used as the logo of the Pythagorean
brotherhood.

Let A, B, C, D, and E be the vertices of a regular pentagon, labeled in coun-
terclockwise order. Label the points of intersection of the diagonals as follows:
F ∈ AC∩BE, G ∈ BD∩CA, H ∈ CE∩DB, I ∈ DA∩EC, and J ∈ EB∩AD.

We wish to show that4ACD is a golden triangle, and that polygon FGHIJ
is another regular pentagon.

Let α = ∠CAD, β = ∠ACD, γ = ∠BAC, and δ = ∠BAE.
By the formula for the angles of a regular polygon, we have

δ = 180◦(1− 2
n

) = 108◦.

Since pentagon ABCDE is regular, the Side-Angle-Side Theorem implies
that

4ABC ∼= 4BCD ∼= 4CDE ∼= 4DEA ∼= 4EAB,
where the symbol ∼= means “is congruent to”; moreover, these are all isosceles
triangles. Thus γ = ∠ABE. This shows that 4FAB is similar to 4ABE, which
is isosceles; thus ∠AFB = δ, so 2γ + δ = 180◦, which gives

γ =
180◦ − δ

2
= 36◦.

Similarly, we have γ = ∠DAE, so ∠BAE = δ = 2γ + α, so

α = δ − 2γ = γ = 36◦.

Now AC = AD because 4BAC ∼= 4EAD, so 4ACD is isosceles. Thus
α+ 2β = 180◦, so

β =
180◦ − α

2
= 72◦.

Thus 4CAD is a golden triangle.
Similarly, one finds other golden triangles in this diagram; we see that

4ACD ∼= 4BDC ∼= 4CEA ∼= 4DAB ∼= 4EBC.
We also see that

4ABG ∼= 4BCH ∼= 4CDI ∼= 4DEJ ∼= 4EAF,
and

4AFJ ∼= 4BGF ∼= 4CHG ∼= 4DIH ∼= 4EJI
are sets of congruent golden triangles. From this, polygon FGHIJ is a regular
pentagon.
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8. Incommensurability

Let A, B, C, and D be points in a plane. We say that AB and CD are
commensurable if there exists a line segment EF and positive integers m and n
such that

|AB| = mEF and |CD| = nEF ;

thus |AB|
|CD| = m

n . The Pythagoreans assumed in their proofs that any two line seg-
ments as commensurable. Suppose that CD = 1; then this assumption amounts
to

|AB| = m

n
∈ Q,

that is, the length of any line segment is a rational number.
Thus for the Pythagoreans, it must have been quite a shock to realize that

not all constructible numbers are rational. This may have been discovered during
contemplation of the golden pentagram, and follows.

Continue notation from the previous section. Since 4ACD is golden, we
have |AC|/|CD| = ϕ. Now |CD| = |CI| and4CDI is golden, so |CD|/|DI| = ϕ.
But then 4DIH is golden, so |IH|/|DH| = ϕ. At this point, we notice that HI
is an edge of the regular pentagon FGHIJ , and the diagonals of this pentagon
have length |DH|. If we inscribe another pentagram in this pentagon, we see
that this chain of equalities will continue forever.

Now if all line segments are commensurable, there exists a line segment MN
such that |AC| and |CD| are in integer multiples of |MN |. Now |AI| = |CD|,
so |AI| is also an integer multiple of |MN |. This shows that

|DI| = |AD| − |AI|
is also a multiple of |mn|. Repeating this argument shows that |HI| is an integer
multiple of |MN |, and this continues into the smaller pentagon.

We can continue this process, getting smaller and smaller pentagons with
smaller and smaller edges, but each edge will be an integral multiple of some
line segment MN of fixed length. Perhaps it was this contradiction which first
demonstrated the existence of irrational numbers.
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9. Regular Solids

Recall that a polygon is a plane figure bounded by line segments. A plane
region is convex if, given any to points in the interior, the line segment between
these points is contained in the interior.

Recall that a polyhedron is a space figure bounded by polygons. The bound-
ing polygons are called faces, the bounding line segments of these polygons are
called edges, and the endpoints of these line segments are called vertices. Again,
a space region is convex if, given any to points in the interior, the line segment
between these points is contained in the interior.

A polyhedron is regular if
(a) it is convex;
(b) its faces of congruent regular polygons;
(c) its vertices have the same number of attached edges.

Regular polyhedra are also known as regular solids, or as Platonic solids.
We wish to classify the regular solids.

First, we decide what the possibilities are, and then we describe the con-
struction of each possibility.

The key to deciding the possibilities is to realize that if multiple faces come
together are a vertex, there must be at least three faces, and the sum of the
angles which come together must be less than 360◦.

The following chart indicates the possibilities. The first column represents
the number of sides of the polygonal faces. By the formula angle = 180◦(1− 2

n ),
we compute the internal angles of a regular n-gon. Then we see how many faces
can come together are a vertex.

Sides Angle/Vertex Faces/Vertex Total Angle Possible?
3 60◦ 3 180◦ Yes
3 60◦ 4 240◦ Yes
3 60◦ 5 300◦ Yes
3 60◦ ≥ 6 ≥ 360◦ No
4 90◦ 3 270◦ Yes
4 90◦ ≥ 4 ≥ 360◦ No
5 108◦ 3 324◦ Yes
5 108◦ ≥ 4 ≥ 432◦ No
≥ 6 ≥ 120◦ ≥ 3 ≥ 360◦ No

So we have five possibilities; there are at most five regular solids (up to
similarity). Next we demonstrate that each of the five possibilities exist.
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10. Construction of the Regular Solids

We wish to construct each regular solid using Euclidean tools (even through
we analyze the construction using analytic geometry). It suffices to construct
the vertices in R3 from the set Q = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3.

First start with 3 squares coming together at a vertex. This will form a a
solid with six sides which we may call a Hexahedron, but is usually known as
a cube, The cube is easily constructed from the set Q; for example, (1, 1, 0) is
the intersection of a line on the xy-plane perpendicular to the x-axis through
(1, 0, 0), and a line on the xy-plane perpendicular to the y-axis through (0, 1, 0).
The complete vertex set is

Cube = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Next construct a regular solid with 3 equilateral triangles coming together
at each vertex; this solid will have 4 faces, and is thus known as a regular tetra-
hedron. We see tetrahedra embedded in the cube by drawing line segments
diagonally across the faces; this will create two sets of vertices of regular tetra-
hedra. One of these sets is

Tetrahedron = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

This will produce regular faces if all of the edges have the same length. Compu-
tation shows that indeed, the edges have length

√
2.

Now we wish to produce a regular solid with 4 equilateral triangles coming
together at each vertex; this solid will have 8 faces, and so it is known as a
regular octahedron. To construct a regular octahedron, take its vertices to be
the set of centers of the faces of the cube; this will give 6 vertices; take the cube
to have sides of length two to simplify the situation, and find that

Octahedron = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

The lengths of the edges of this solid are also
√

2.
We note that if we take the centers of the faces of an octahedron as vertices

for a solid, we obtain a cube; that is, the 8 vertices of the cube correspond to
the 8 faces of the octahedron, just as the 6 vertices of the octahedron correspond
to the 6 faces of the cube. We say that the cube and the octahedron are dual
polyhedra. Note that the dual of the tetrahedron is another tetrahedron; it is
self-dual.

Next we construct a solid with five triangular faces coming together at each
vertex, which has twenty faces and as such is known as an icosahedron. To do
this, embed three golden rectangles with sides of length 1 and ϕ in R3 on the
coordinate planes so that the center of each rectangle is the origin.

Let α = 1
2 and let β = 1+

√
5

4 = ϕ
2 . Set

Icosahedron = {(0,±α,±β), (±α,±β, 0), (±β, 0,±α)},

this set contains 12 points, and produces a solid with 20 triangular faces. For
example, one of the faces has vertices A = (β, α, 0), B = (β,−α, 0), and C =
(α, 0, β)}. That |AB| = 1 is clear, and that |AC| = |BC| is also clear. To see
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that this is an equilateral triangle, we compute

|AC| =
√

(α− β)2 + (0− α)2 + (β − 0)2

=
√

2α2 + 2β2 − 2αβ

=

√
1
2

+
ϕ2

2
− ϕ

2

=

√
1 + (ϕ+ 1)− ϕ

2
= 1.

Thus indeed, we have constructed a regular triangle, so we have a regular icosa-
hedron.

Finally, we consider the case of three regular pentagons coming together at a
vertex; this produces a polyhedron with twelve faces known as a dodecahedron.
We can obtain this as the dual of the icosahedron; that is, let the vertex set be
the set of centers of the faces of a regular icosahedron.

We investigate this vertex set. The center of an equilateral triangle in space
is obtained by averaging the coordinates of the vertices; that is, the center of the
equilateral triangle 4A1A2A3, where Ai = (xi, yi, zi), is(

x1 + x2 + x3

3
,
y1 + y2 + y3

3
,
z1 + z2 + z3

3

)
.

In our case, we obtain two types of triangles: those who share a side with one of
the golden rectangles, and those whose vertices come from three different golden
rectangles. There are twelve of the former and eight of the latter.

The first twelve are easy to see: there are six sides of length 1 on the rect-
angles, and two triangles sharing each such side. The eight others are obtained
by noticing that only certain combinations are possible. Here is a complete list,
with all coordinates multiplied by three, γ = α+ 2β, and s1, s2, s3 ∈ {±1}.

Dodecahedron = {(±γ, 0,±β), (±β,±γ, 0), (0,±β,±γ),
(s1β, s2α, 0), (0, s2β, s3α), (s1α, 0, s3β)}.
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11. Problems

Problem 1. Consider the sequence (an) of real numbers defined by

a1 = 1 and an+1 =
√

1 + an.

Assuming that (an) converges, find limn→∞ an. To prove that (an) converges,
show that (an) is bounded and increasing.

Problem 2. Consider the sequence (an) of real numbers defined by

a1 = 1 and an+1 =
1

1 + an
.

Assuming that (an) converges, find limn→∞ an.

Problem 3. Consider a pyramid with four triangular sides and a square base.
Let h be the height of the pyramid. Let s be the height of a triangular side, let a
be half the length of its base, so that the area of the triangular side is sa. Show
that if h2 = sa, then the slope of the pyramid, s

a , is equal to the Golden Ratio.

Problem 4. Consider the regular solids inscribed in a unit sphere.
(a) Find the lengths of the line segments for each solid.
(b) Find the area of a face of each solid.
(c) Find the angle between the faces of each solid.
(d) Find the radius of the inscribed sphere of each solid.
(e) Find the volume of each solid.





CHAPTER IV

The Euclidean Algorithm

1. Induction and the Well-Ordering Principle

First we establish a few properties of the integers which we need in order
to develop the Euclidean algorithm. We start with the natural numbers N =
{1, 2, 3, . . . }, and accept the Peano Axioms as a characterization of N. The
primary axiom is stated below.

Proposition 1. Peano’s Axiom
Let S ⊂ N. If

(a) 1 ∈ S, and
(b) n ∈ S ⇒ n+ 1 ∈ S,

then S = N.

From this, the Well-Ordering Principle follows.

Proposition 2. Well-Ordering Principle
Let X ⊂ N be a nonempty set of positive integers. Then X contains a smallest,
element; that is, there exists a ∈ X such that for every x ∈ X, a ≤ x.

Proof. Let X ⊂ N and assume that X has no smallest element; we show that
X = ∅. Let

S = {n ∈ N | n < x for every x ∈ X}.
Clearly S ∩X = ∅; if we show that S = N, then X = ∅.

Since 1 is less than every natural number, 1 is less than every natural number
in X. Thus 1 ∈ X.

Suppose that n ∈ S. Then n < x for every x ∈ X, so n + 1 ≤ x for every
x ∈ X. If n+1 were in X, it would be the smallest element of X; since X has no
smallest element, n+ 1 /∈ x; thus n+ 1 6= x for every x ∈ X, whence n+ 1 < x
for every x ∈ X. It follows that n+ 1 ∈ S, and by Peano’s Axiom, S = N. �
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2. Division Algorithm

Proposition 3. Division Algorithm for Integers
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = qm+ r and 0 ≤ r < m.

Proof. Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X
consisting of nonnegative integers is a subset of N, and by the Well-Ordering
Principle, contains a smallest member, say r. That is, r = n − qm for some
q ∈ Z, so n = qm + r. We know 0 ≤ r. Also, r < m, for otherwise, r −m is
positive, less than r, and in X.

For uniqueness, assume n = q1m+r1 and n = q2m+r2, where q1, r1, q2, r2 ∈
Z, 0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1−q2) = r1−r2; also −m < r1−r2 <
m. Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces
q1 = q2. �

Definition 4. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Definition 5. Let m,n ∈ Z. A greatest common divisor of m and n, denoted
gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) If e | m and e | n, then e | d.

Proposition 6. Let m,n ∈ Z. Then there exists a unique d ∈ Z such that
d = gcd(m,n), and there exist integers x, y ∈ Z such that

d = xm+ yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset
of X consisting of positive integers contains a smallest member, say d, where
d = xm+ yn for some x, y ∈ Z.

Now m = qd+r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm+yn)+r,
so r = (1 − qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive
integer in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then
d = xke+ yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satisfies
the conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some
i, j ∈ Z. Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since
d and e are both positive, we must have i = 1. Thus d = e. �

Fact 7. Let m,n ∈ Z and suppose that there exist integers x, y ∈ Z such that
xm+ yn = 1. Show that gcd(m,n) = 1.

Fact 8. Let m,n ∈ N and suppose that m | n. Show that gcd(m,n) = m.
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3. Euclidean Algorithm

There is an efficient effective procedure for finding the greatest common
divisor of two integers. It is based on the following proposition.

Proposition 9. Let m,n ∈ Z, and let q, r ∈ Z be the unique integers such that
n = qm+ r and 0 ≤ r < m. Then gcd(n,m) = gcd(m, r).

Proof. Let d1 = gcd(n,m) and d2 = gcd(m, r). Since “divides” is a partial order
on the positive integers, it suffices to show that d1 | d2 and d2 | d1.

By definition of common divisor, we have integers w, x, y, z ∈ Z such that
d1w = n, d1x = m, d2y = m, and d2z = r.

Then d1w = qd1x+ r, so r = d1(w − qx), and d1 | r. Also d1 | m, so d1 | d2

by definition of gcd.
On the other hand, n = qd2y + d2z = d2(qy + z), so d2 | n. Also d2 | m, so

d2 | d1 by definition of gcd. �

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where
0 ≤ r < m. Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes
r0 = r1q1 + r2. Repeat the process by writing m = rq2 + r3, which is the same
as r1 = r2q2 + r3, with 0 ≤ r3 < r2. Continue in this manner, so in the ith stage,
we have ri−1 = riqi + ri+1, with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it
must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition
and induction,

gcd(n,m) = gcd(m, r) = · · · = gcd(rk−1, rk).

But rk−1 = rkqk +rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. Therefore
gcd(n,m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.
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In order to find the unique integers x and y such that xm+ yn = gcd(m,n),
use the equations derived above and work backward. Start with rk = rk−2 −
rk−1qk−1. Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this
one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1) = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the gcd:
• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).
Let’s briefly analyze the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger

number. Always attach x to m and y to n, to get d = xm + yn, where d =
gcd(m,n). Now at the very end, the remainder is zero, so

n = mq + 0.

Thus m = gcd(n,m), that is, d = m. Writing d as a linear combination at this
stage, we have

d = (1)m+ (0)nm
so x = 1 and y = 0.

Now we want to lift this to a previous equation of the form n = mq + r.
Assume, by way of induction, that we have already lifted it to the next equation;
that is, we have n′ = m′q′ + r′, where n′ = m, m′ = r, and we can express d as
a linear combination of m′ and n′, like this:

d = x′m′ + y′n′.

Then d = x′r+y′m. Substitute in r = n−mq to express d as a linear combination
of m and n; you get d = x′(n−mq) + y′m = (y′− x′q)m+ x′n. Set x = y′− x′q
and y = x′ to obtain d = xm+ yn.
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4. Fundamental Theorem of Arithmetic

Definition 10. An integer p ≥ 2, is called prime if

a | p⇒ a = 1 or a = p, where a ∈ N.
An integer n ≥ 2 is called composite if it is not prime.

Proposition 11. Let p ∈ Z, p ≥ 2. Then p is prime if and only if

p | ab⇒ p | a or p | b, where a, b ∈ N.

Proof.
(⇒) Given that a | p ⇒ a = 1 or a = p, suppose that p | ab. Then there exists
k ∈ N such that kp = ab. Suppose that p does not divide a; then gcd(a, p) = 1.
Thus there exist x, y ∈ Z such that xa+yp = 1. Multiply by b to get xab+ypb =
b. Substitute kp for ab to get (xk + yb)p = b. Thus p | b.
(⇐) Given that p | ab ⇒ p | a or p | b, suppose that a | p. Then there exists
k ∈ N such that ak = p. So p | ak, so p | a or p | k. If p | a, then pl = a for some
l ∈ N, in which case alk = a and lk = 1, which implies that k = 1 so a = p. If
p | k, then k = pm for some m ∈ N, and apm = p, so am = 1 which implies that
a = 1. �

Remark 12 (Euclid’s Statement). A composite number is measured by some
prime.

Euclid’s Proof. Infinite regression, similar to its use in the Euclidean algorithm.
�

Proposition 13. Let n be a composite number. Then there exists a prime p
such that p | n.

Modern Proof. Since n is composite, there exist a, b ∈ N such that 1 < a, b < n
and n = ab. By induction, there exists a prime p such that p | b. Thus p | n. �

Remark 14 (Euclid’s Statement). If a number be the least that is measured
by prime numbers, it will not be measured by any other prime number except
those originally measuring it.

Proposition 15 (Fundamental Theorem of Arithmetic). Let n ∈ Z, n ≥ 2.
Then there exist unique prime numbers p1 < · · · < pr and positive integers
a1, . . . , ar such that

n =
r∏

i=1

pai
i .

Proof. Let
X = {m ∈ Z | m ≥ 2 and m | n}

Let p = min(X). Clearly, p is prime. If n = p, we are done. Otherwise, n = pk
for some k ∈ Z. By strong induction, there exist q1 < · · · < qs and b1, . . . , bs
such that k =

∏s
i=1 q

bi
i . If p = q1, set pi = qi, a1 = b1 + 1, and ai = bi for i > 1,

and r = s; otherwise set p1 = p, pi+1 = qi, a1 = 1, and ai+1 = bi, and r = s+ 1.
Now n = u

∏r
i=1 p

ai
i . �
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5. Infinitude of Primes

Remark 16. Let A be a set. We say that A infinite if there exists an injective
function N → A. We say that A is finite if there exists a surjective function
{1, . . . , n} → A, for some n ∈ N.

Remark 17 (Euclid’s Statement). The prime numbers are more than any as-
signed multitude of prime numbers.

Proposition 18. Let P = {n ∈ Z | n is prime}. Then P is infinite.

Proof. Suppose that P is finite; then P = {p1, . . . , pn} for some primes pi. Set

n = 1 +
n∏

i=1

pi.

Since n > pi for all i, n cannot be prime; thus n is composite. Therefore there
exists p ∈ P such that p | n. This implies that p | 1, a contradiction. �

6. Problems

Problem 1. Show that the relation | is a partial order on the set of positive
integers.

Problem 2. Let m,n ∈ Z and suppose that there exist integers x, y ∈ Z such
that xm+ yn = 1. Show that gcd(m,n) = 1.

Problem 3. Let m,n ∈ N and suppose that m | n. Show that gcd(m,n) = m.



CHAPTER V

Archimedes on Circles and Spheres

Abstract. Disclaimer: some sections of this document were lifted from
the internet, but I no longer remember which ones.

1. Precursors of Archimedes

1.1. Pythagorean Irrational Numbers. The Pythagoreans (ca. 500
B.C.) proved the existence of irrational numbers in the form of “incommen-
surable quantities”. This tore at the fabric of their world view, based on the
supremacy of whole numbers, and it is legend that the demonstrator of irra-
tional numbers was thrown overboard at sea.

1.2. Zeno’s Paradoxes. Zeno (ca. 450 B.C.) developed his famous “para-
doxes of motion”.

1.2.1. The Dichotomy. The first paradox asserts the non-existence of motion
on the grounds that which is in locomotion must arrive at the half-way stage
before it arrives at the goal.

1.2.2. Achilles and the Tortoise. The second paradox asserts that it is im-
possible for Achilles to overtake the tortoise when pursuing it, for he must first
reach a point where the tortoise had been, but the tortoise had in the meantime
moved forward.

1.2.3. The Arrow. The third paradox is that the flying arrow is at rest,
which result follows from the assumption that time is composed of moments.

1.2.4. The Stadium. The fourth paradox concerns bodies which move along-
side bodies in the stadium from opposite directions, from which it follows, ac-
cording to Zeno, that half the time is equal to its double.

1.3. Eudoxus Method of Exhaustion. Eudoxus (ca. 370 B.C.) is re-
membered for two major mathematical contributions: the Theory of Proportion,
which filled the gaps in the Pythagorean theories created by the existence of
incommensurable quantities, and the Method of Exhaustion, which dealt with
Zeno’s Paradoxes. This method is based on the proposition: If from any magni-
tude there be subtracted a part not less than its half, from the remainder another
part not less than its half, and so on, there will at length remain a magnitude
less than any preassigned magnitude of the same kind.

Archimedes credits Eudoxus with applying this method to find that the
volume of “any cone is on third part of the cylinder which has the same base
with the cone and equal height.”

1.4. Euclid’s Elements. Euclid of Alexandria (ca. 300 B.C.) wrote The
Elements, which may be the second most published book in history (after the
Bible). The work consists of thirteen books, summarizing much of the basic

37
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mathematics of the time, spanning plane and solid geometry, number theory,
and irrational numbers.

2. Results from Euclid

Result 1. The circumferences of two circles are to each other as their diameters.

Using modern notation, this says that if we are given two circles with diam-
eters D1 and D2, and circumferences C1 and C2, then

C1

C2
=
D1

D2
, whence

C1

D1
=
C2

D2
.

From this, one may conclude that for any given circle, the ratio between the
circumference and the diameter is a constant:

C

D
= p, so C = pD.

We shall call p the circumference constant.

Result 2. The areas of two circles are to each other as the squares of their
diameters.

That is, if A1 and A2 represent the area of circles with diameters D1 and
D2, then

A1

A2
=
D2

1

D2
2

, whence
A1

D2
1

=
A2

D2
2

,

which says that there is an area constant for any circle:
A

D2
= k, so A = kD2.

However, Euclid doesn’t mention, and possibly doesn’t realize, that p and k are
related.

Result 3. The volumes of two spheres are to each other as the cubes of their
diameters.

Thus if V1 and V2 are the volumes of spheres of diameter D1 and D2, then

V1

V2
=
D3

1

D3
2

, whence
V1

D3
1

=
V2

D3
2

;

again, one sees that, for again given sphere, there is a volume constant m such
that

V

D3
= m, so V = mD3.

Note that in each of these three cases (circumference, area, volume), the
original statements by Euclid compare like units (e.g. length is to length as area
is to area), whereas the modern tendency is to compare aspects of the same
object (e.g. area is to length squared).
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3. Measurement of a Circle

Proposition 4. The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle is equal to the radius, and the other
to the circumference, of the circle.

Let be C be the circumference, r the radius, and A the area of the circle.
Let T be the area of a right triangle with legs of length r and C. Then T = 1

2rC.
Archimedes claims that A = T , so A = 1

2rC.

Lemma 5. Let h be the apothem and let Q be the perimeter of a regular polygon.
Then the area of the polygon is

P =
1
2
hQ.

Proof. Suppose the polygon has n sides, each of length b. Clearly Q = nb. Then
the area is subdivided into n triangles of base b and height h, so

P = n(
1
2
hb) =

1
2
hQ.

�

Lemma 6. Consider a circle of area A and let ε > 0. Then there exists an
inscribed polygon with area P1 and a circumscribed polygon with area P2 such
that

A− ε < P1 < A < P2 < A+ ε.

Proof. Archimedes simply says: “Inscribe a square, then bisect the arcs, then
bisect (if necessary) the halves and so on, until the sides of the inscribed polygon
whose angular points are the points of the division subtend segments whose sum
is less than the excess of the area of the circle over the triangle.” �

Proof of Proposition. By double reductio ad absurdum.
Suppose that A > T . Then A − T > 0, so there exists an inscribed regular

polygon with area P such that A − P < A − T . Thus P > T . If Q is the
perimeter and h the apothem of the polygon, we have

P =
1
2
hQ <

1
2
rC = T,

a contradiction.
On the other hand, suppose that A < T . Then T − A > 0, so there exists

a circumscribed polygon with area P such that P − A < T − A. Thus P < T .
However, if Q is the perimeter and h the apothem of the polygon, we have

P =
1
2
hQ >

1
2
rC = T,

a contradiction.
Therefore, as Archimedes writes, “since then the area of the circle is neither

greater nor less than [the area of the triangle], it is equal to it.” �
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Proposition 7. The ratio of the circumference of any circle to its diameter is
less the 3 1

7 but greater than 3 10
71 .

Proof. Inscribe a hexagon. Compute the area:

π =
C

D
>
Q

D
=

6r
2r

= 3.

Archimedes next doubles the number of vertices to obtain a regular do-
decagon. The computation of its area requires accurate extraction of

√
3, which

Archimedes estimates as(
1.732026 ≈

)
265
153

<
√

3 <
1351
780

(
≈ 1.732051

)
,

which is impressively close. The Archimedes continues with 24, 48, and finally
96 sides, at each stage extracting more sophisticated square roots.

Next circumscribe a hexagon and continue to 96 sides. �

In decimal notation, my calculator says that

3
10
71

=
223
71

≈ 3.14085 < π ≈ 3.14159 < 3
1
7

=
22
7
≈ 3.14286.
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4. On the Sphere and the Cylinder

The two volume work entitled On the Sphere and the Cylinder is Archimedes
undisputed masterpiece, probably regarded by Archimedes himself as the apex
of his career. These two volumes are constructed in a manner similar to Euclid’s
Elements, in that it proceeds from basic definitions and assumptions, through
simpler known results, onto the new discoveries of Archimedes.

Among the results in this work are the following. This first describes the
surface area of a sphere in terms of the area of a circle, thus comparing area to
area.

Proposition 8. The surface of any sphere is equal to four times the greatest
circle in it.

Technique of Proof. Double reductio ad absurdum: assumption that the area is
more leads to a contradiction, as does assumption that the area is less. One needs
to understand the area of a cone to accomplish these estimates (why?). �

Let us translate this into modern notation. Let r be the radius of the sphere
and let S be its surface area. Then the radius of the greatest circle in it is πr2.
Thus Archimedes shows that

S = 4πr2.
The next proposition describes the volume of a sphere in terms of the volume

of a cone.

Proposition 9. Any sphere is equal to four times the cone which has its base
equal to the greatest circle in the sphere and its height equal to the radius of the
sphere.

Note that again, Archimedes has expressed the volume of the sphere in terms
of the volume of a known solid; this is because the Greeks did not have modern
algebraic notation. Using modern notation, we let r be the radius and let V be
the volume of the sphere. The volume of the cone of radius r and height r, as
determined by Eudoxus, is 1

3πr
3. Thus

V =
4
3
πr3.
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In this way, Archimedes found the relationship between the circumference
constant p, the area constant k (in Measurement of a Circle), and the volume
constant m: We have

C = pD, A = kD2, , and V = mD3,

and Archimedes has shown (in modern notation) that

C = πD (that is, p = π)

A = πr2 = π

(
D

2

)2

=
π

4
D (so k =

π

4
)

V =
4
3
πr3 =

4
3
π

(
D

2

)3

=
π

6
πD3 (so m =

π

6
)

From here, Archimedes now describes an astounding discovery.
Suppose we have a sphere of radius r, surface area S, and volume V . Inscribe

this sphere in a right circular cylinder, whose radius would also be r and whose
height would be 2r. Then the surface area Acyl of the cylinder is simply the
areas of the base and top circle, plus the area of the rectangle which forms the
tube of the cylinder:

Acyl = 2(πr2) + (2πr)(2r) = 6πr2.

Thus
Acyl : Asph = (6πr2) : (4πr2) = 3 : 2.

Moreover, the volume of the cylinder is the area of the circular base times
the height:

Vcyl = (πr2)(2r) = 2πr3.
Again, we have

Vcyl : Vsph = (2πr3) : (
4
3
πr3) = 3 : 2.

This so intrigued Archimedes that he requested that his tombstone be en-
graved with a sphere inscribed in a cylinder, together with the ratio 3 : 2. Appar-
ently, Marcellus, the conqueror of Syracuse, was so impressed with Archimedes,
that he granted this wish.



CHAPTER VI

Diophantine Equations

1. Pythagorean Triples

A Pythagorean triple (a, b, c) consists of three integers a, b, c ∈ Z with a, b ≥ 1
such that a2 + b2 = c2.

The Babylonians produced tablets containing tables of Pythagorean triples.
It is conjectured that they may have known of the formula to generate such
triples: let u and v be any positive integers, and set

(a) a = u2 − v2;
(b) b = 2uv;
(c) c = u2 + v2.

Then

a2 + b2 = (u2 − v2)2 + (2uv)2

= u4 − 2u2v2 + v4 + 4u2v2

= u4 + 2u2v2 + v4

= (u2 + v2)2

= c2.

Thus we have:

Proposition 1. Let u, v ∈ Z and set a = u2 − v2, b = 2uv, and c = u2 + v2.
Then (a, b, c) is a Pythagorean triple.

The equivalent of this scheme for generating Pythagorean triples can be
found in Euclid’s Elements, Book X, Lemma following Proposition 28. We ask if
the converse is true; that is, does this method generate all Pythagorean triples?
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2. Diophantine Equations

A Diophantine equation is an equation of the form

F (x1, . . . , xn) = 0,

where F (x1, . . . , xn) is a polynomial in n variables with integer coefficients. A
solution to a Diophantine equation is a point (a1, . . . , an) ∈ Cn, where ai ∈ Z
and F (a1, . . . , an) = 0.

This is the modern definition. However, Diophantus looked for rational
solutions to polynomial equations with integer (or rational) coefficients. We note
that a rational solution to a polynomial equation produces an integer solution to
a modified polynomial equation, obtained by clearing the denominators; that is,
multiply the expression F (a1, . . . , an) = 0 by the least common multiple of the
highest powers of the denominators of a1, . . . , an to appear in the expression.

Example 2. Pythagorean triples are integer solutions to the polynomial equa-
tion x2 + y2 = z2. Suppose (a, b, c) is such a solution, with a, b, c ∈ Z. Then
(a

c ,
b
c ) is a rational solution to the equation x2 + y2 = 1. Thus the problem of

finding integer solutions to x2 + y2 = z2 is equivalent to the problem of finding
rational solutions to x2 + y2 = 1.

Example 3. Fermat’s last theorem essentially states that there are no nontrivial
integer solutions to the equation xn+yn = zn for n ≥ 3. Again, this is equivalent
to the nonexistence of nontrivial rational solutions to xn + yn = 1 for n ≥ 3.

Example 4. Fix m,n ∈ Z, and let d = gcd(m,n). The Euclidean algorithm
produces unique solutions to the Diophantine equation mx+ ny = d.

An plane algebraic curve is the subset of C2 which is the set of points (a, b) ∈
C2 such that F (a, b) = 0 for some polynomial F (x, y) with coefficients in C. We
say that the curve is defined over Q if these coefficients are in Q. The degree of
the curve is the degree of the polynomial F . A rational point on the curve is a
point on the curve with rational coordinates.

Diophantus studied plane algebraic curves, and looked for rational solutions
to such polynomial equations, which is to say, he attempted to find rational
points on the associated algebraic curve. Keep in mind that the notation used
by Diophantus was very dissimilar to that used today.

Example 5. We see that (a, b, c) is a Pythagorean triple if and only if (a
c ,

b
c ) is

a rational point on the curve x2 + y2 = 1.

Example 6. Fermat’s Last Theorem amounts to the claim that (1, 0) and (0, 1)
are the only rational points on the curve xn + yn = 1.
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3. Generation of Pythagorean Triples

One technique used by Diophantus to find rational points on a curve was to
find an apparent solution P and intersect the curve with lines through P which
have rational slope. That this works for conic sections is exemplified by the
following propositions.

Proposition 7. Let f(x) = ax2 + bx + c, where a, b, c ∈ Q. If x1, x2 satisfy
f(x) = 0, and x1 ∈ Q, then x2 ∈ Q.

Proof. Suppose x2 6= x1. Set d =
√
b2 − 4ac. Then

x1 =
−b+ ud

2a
and x2 =

−b− ud

2a
,

where u = 1 or u = −1. Therefore d = u(2ax1 + b) ∈ Q. Therefore x2 ∈ Q. �

Proposition 8. Let P = (−1, 0) and Q = (a, b) with a2 + b2 = 1 and a > −1.
Then P and Q are distinct points on the unit circle x2 + y2 = 1, and Q is a
rational point if and only if the slope of line through P and Q is rational.

Proof. Let m be the slope of the line through P and Q; then

m =
b

a+ 1
,

and the equation of the line through P and Q is y = m(x+ 1).
If Q is rational, this means that a, b ∈ Q, so m = b

a+1 ∈ Q.
On the other hand, suppose that the slope is rational. The x-coordinate of

the intersection of the curve and the line satisfies

x2 + (m(x+ 1))2 = 1.

This is a quadratic equation whose solutions, for our given m, are x = −1 and
x = a; therefore, a is rational by Proposition 7. �

The problem of finding Pythagoreans triples is equivalent to the problem of
finding rational points on the curve x2 + y2 = 1. Diophantus realized that all
such points could be obtained by running a line with rational slope through the
point P = (−1, 0) and taking the point of intersection with the unit circle. We
compute these points as follows.

Let m ∈ Q; the line with slope m through P is y = m(x+ 1). Let Q be the
other point of intersection of this line with the unit circle. Substituting m(x+1)
for y in the equation of the unit circle gives x2 + (m(x+ 1))2 = 1, or

(m2 + 1)x2 + 2m2x+ (m2 − 1) = 0.

This quadratic equation has solutions

x =
−2m2 ±

√
4m4 − 4(m4 − 1)

2(m2 + 1)
=
−m2 ± 1
m2 + 1

,

so the solution that produces P is x = −1, and the solution that produces Q is

x =
1−m2

1 +m2
.
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Substitute this into the line to get

y =
2m

1 +m2
.

We have shown:

Proposition 9. Let U = {(x, y) ∈ R2 | x2 + y2 = 1} and let P = (−1, 0). The
function

φ : Q → U given by φ(m) =
(

1−m2

1 +m2
,

2m
1 +m2

)
produces a bijective correspondence between the rational numbers and the rational
points (other than P ) on the unit circle.

Now plug these values for x and y into the equation of the circle and get(
1−m2

1 +m2

)2

+
(

2m
1 +m2

)2

= 1,

therefore
(1−m2)2 + 4m2 = (1 +m2)2.

Let m ∈ Q be positive; then there exist positive u, v ∈ Z such that m = v
u .

Then, substituting this into the above formula and clearing the denominators by
multiplying by u4, we obtain

(u2 − v2)2 + (2uv)2 = (u2 + v2)2.

This shows:

Theorem 10 (Diophantus’ Theorem). Let (a, b, c) be a Pythagorean triple. Then
there exist u, v ∈ Z such that a = u2−v2, b = 2uv, and (consequently) c = u2+v2.

4. Cubic Equations

Diophantus also applied this technique to cubic equations in two variables,
using the fact that the generic degree three polynomial in one variable has three
solutions, and if two of them are rational, then so is the third.

Given a degree three curve defined over Q by the equation F (x, y) = 0, the
intersection of the curve with a line y = mx+b gives an equation F (x,mx+b) = 0.
If two rational solutions are known, then the third solution must also be rational.

Suppose we find one rational point P = (a, b) on the curve. If we select a
nearby point on the curve and let it approach P , the secant line between the
points approaches the tangent line y = mx + b. Then m is rational, and if this
tangent line intersects the curve in another point, the other point will also be
rational. This is because a is a double root of F (x,mx+ b) = 0.

As an aside, we note that this technique re-emerged in the early 19th century
in the following context. In attempting to compute the arclength along an ellipse,
Niels Henrik Abel discovered certain integrals, known as elliptic integrals, with
the property that the natural domain of the inverse of the antiderivative was
a torus as opposed to the Riemann sphere (this is the traditional name for the
complex plane together with a point at ∞). This developed into the study of
elliptic curves, which are curves defined by an equation of the form y2 = f(x),
where f(x) is a cubic polynomial.
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In 1835, Carl Gustav Jacob Jacobi created a type of addition of the points
on an elliptic curve, called the chord-tangent law, which can be defined in terms
of taking lines through points and intersecting them with the curve. Under this
addition, the sum of rational points is also rational, so the set of rational points
form an algebraic system known as an abelian group.

Example 11. Find three rational points on the curve y2 = x3 − 3x2 + 3x+ 1.

Solution. We see that (0, 1) and (0,−1) are solutions. Let P = (0, 1); we would
like to find the line tangent to the curve through the point P . Using implicit
differentiation (which was not available to Diophantus), we compute that

2y
dy

dx
= 3x2 − 6x+ 3,

so
dy

dx
=

3(x2 − 2x+ 1)
2y

.

Set
m =

dy

dx
|P =

3
2
.

If P = (x0, y0) = (0, 1), the tangent line is

y = m(x− x0) + y0 =
3
2
x+ 1.

Substitute this into the equation of the curve to get(
3
2
x+ 1

)2

= x3 − 3x2 + 3x+ 1.

Solving for x gives x = 21
4 . Applying this to the line produces y = 71

8 . This is
rational; thus ( 21

4 ,
71
8 ) is a rational point on the curve. �

5. Problems

Problem 1. The equation y2 = x3 − ax+ b defines an elliptic curve.
(a) Use calculus to find all points on the curve with horizontal or vertical

tangents.
(b) Let a = 12 and b = 25. Take a horizontal tangent and intersect it with

this curve to find another rational point.
(c) Let a = 2 and b = 0. Find three rational points on this curve.





CHAPTER VII

Modular Arithmetic

Abstract. Congruence relations were formalized by Gauss at the begin-
ning of the nineteenth century; however, important components of the the-

ory were realized by the ancient Greeks, Arabs, and Chinese. We investigate

this, with an eye towards understanding the Chinese Remainder Theorem.

1. Review of Integer Properties

Fact 1. Division Algorithm for Integers
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = qm+ r and 0 ≤ r < m.

Definition 2. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Definition 3. Let m,n ∈ Z. A greatest common divisor of m and n, denoted
gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) If e | m and e | n, then e | d.

Fact 4. Euclidean Algorithm for Integers
Let m,n ∈ Z. Then there exists a unique d ∈ Z such that d = gcd(m,n), and
there exist integers x, y ∈ Z such that

xm+ yn = d.

Definition 5. An integer p ≥ 2, is called prime if

a | p⇒ a = 1 or a = p, where a ∈ N.
An integer n ≥ 2 is called composite if it is not prime.

Fact 6. Fundamental Theorem of Arithmetic
Let n ∈ Z, n ≥ 2. Then there exist unique prime numbers p1 < · · · < pr and
positive integers a1, . . . , ar such that

n =
r∏

i=1

pai
i .
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2. Congruence Modulo n

Proposition 7. Let n ∈ Z with n ≥ 2, and let a, b, c ∈ Z. Then
(a) a ≡ a (mod n) (Reflexivity);
(b) if a ≡ b (mod n), then b ≡ a (mod n) (Symmetry);
(c) if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (Transitiv-

ity).

Proof.
(Reflexivity) Note that 0 · n = 0 = a− a; thus n | (a− a), so a ≡ a. Therefore ≡
is reflexive.
(Symmetry) Let a, b ∈ Z. Suppose that a ≡ b; then n | (a− b). Then there exists
k ∈ Z such that nk = a − b. Then n(−k) = b − a, so n | (b − a). Thus b ≡ a.
Similarly, b ≡ a⇒ a ≡ b. Therefore ≡ is symmetric.
(Transitivity) Let a, b, c ∈ Z, and suppose that a ≡ b and b ≡ c. Then nk = a− b
and nl = b− c for some k, l ∈ Z. Then a− c = nk− nl = n(k− l), so n | (a− c).
Thus a ≡ c. Therefore ≡ is transitive. �

Proposition 8. Let n ∈ Z with n ≥ 2. Let a, b ∈ Z. Then a ≡ b (mod n) if and
only if a and b have the same remainder upon division by n.

Proof. By the division algorithm, there exist unique integer q1, q2, r1, r2 such
that

a = nq1 + r1 with 0 ≤ r1 ≤ n

and
b = nq2 + r2 with 0 ≤ r2 ≤ n.

Thus a− b = n(q1 − q1) + (r1 − r2).
If a ≡ b (mod n), then n | (a − b), so a − b = kn for some k ∈ Z. Thus

kn = n(q1 − q2) + (r1 − r2), so r1 − r2 = n(k − q1 + q2); that is, r1 − r2 is a
multiple of n. But subtracting the inequalities bounding the remainders shows
that −n < r1 − r2 < n, and the only multiple of n in this range is zero. So
r1 − r2 = 0, whence r1 = r2.

On the other hand, if r1 = r2, then we have a − b = n(q1 − q2), so a − b is
divisible by n, and a ≡ b (mod n). �

Proposition 9. Let n ∈ Z with n ≥ 2. Let a, b, c, d ∈ Z with a ≡ c and b ≡ d.
Then

(a) a+ b ≡ c+ d (mod n);
(b) ab ≡ cd (mod n).

Proof. All equivalences will be taken modulo n. Since a ≡ c and b ≡ d, there
exist p, q ∈ Z such that a− c = pn and b− d = qn.

Now a+b = c+pn+d+qn = (c+d)+n(p+q), so (a+b)−(c+d) = n(p+q),
whence a+ b ≡ c+ d.

Similarly, ab = (c+pn)(d+qn) = cd+cqn+dpn+pqn2 = cd+n(cq+dp+pqn),
whence ab−cd = n(cq+dp+pqn), so ab−cd is divisible by n. Thus ab ≡ cd. �
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3. Casting Out n’s

The process of casting out n’s involves subtracting n from a number until
one arrives at a number less than n. Clearly, this number is the remainder upon
division by n, so it is related to modular arithmetic.

The method of casting out n’s, together with decimal notation, led Arabs of
1500 years ago to discover certain divisibility criteria. We demonstrate this in
modern notation.

Fix n ∈ Z with n ≥ 0. For a ∈ Z, let a denote the remainder when a is
divide by n. The last proposition states that a+ b ≡ a+ b and ab ≡ ab, modulo
n.

If d0, d1, . . . , dr are the digits of a ∈ N, then

a =
r∑

i=0

di10i.

The idea of casting out n’s revolves around the fact that

a ≡
r∑

i=0

di10i (mod n).

Proposition 10. Casting Out 3’s and 9’s
Let a ∈ Z be a positive integer with decimal expansion

a =
k∑

i=0

di10i,

where 0 ≤ di ≤ 9 for i = 0, . . . , k. Set

s =
k∑

i=0

di

Let n = 3 or n = 9. Then a is divisible by n if and only if s is divisible by n.

Proof. Let n = 3 or n = 9 and consider equivalence modulo n. Note that
10 ≡ 1 (mod n) for n = 3 or n = 9. Then we have

a =
k∑

i=0

di10i

≡
k∑

i=0

di10i

≡
k∑

i=0

di because 10 = 1

= s.

So a and s have the same remainder upon division by n, and in particular a is
divisible by n if and only if s is divisible by n. �
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Proposition 11. Casting Out 11’s
Let a ∈ Z be a positive integer with decimal expansion

a =
k∑

i=0

di10i,

where 0 ≤ di ≤ 9 for i = 0, . . . , k. Set

s =
k∑

i=0

(−1)idi

Let n = 11. Then a is divisible by n if and only if s is divisible by n.

Proof. Let n = 11. In this case, 10 ≡ −1 (mod n). We have

a =
k∑

i=0

di10i

≡
k∑

i=0

di10i

≡
k∑

i=0

di−1i

≡
k∑

i=0

(−1)idi

= s.

Thus a is divisible by n if and only if s is divisible by n. �
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4. Chinese Remainder Theorem

Proposition 12. Let a, b,m, n ∈ Z such that gcd(m,n) = 1.
Then there exists c ∈ Z such that

• c ≡ a mod m;
• c ≡ b mod n.

Proof. There exist x, y ∈ Z such that mx+ ny = 1. Let c = mxb+ nya. Then

c− a = mxb+ nya− a = mxb+ (ny − 1)a = mxb−mxa,

so m divides c− a; thus c ≡ a mod m. Also

c− b = mxb+ nya− b = (mx− 1)b+ nya = −nyb+ nya,

so n divides c− b; thus c ≡ b mod n. �

Example 13. Let m = 104, n = 231, a = 11, and b = 23. Find c ∈ Z with
0 ≤ c < mn such that c ≡ a (mod m) and c ≡ b (mod n).

Solution. First we use the Euclidean algorithm to write mx+ yn = d. We have

231 = 104 · 2 + 23
104 = 23 · 4 + 12
23 = 12 · 1 + 11
12 = 11 · 1 + 1
11 = 1 ∗ 11 + 0

Thus

1 = (−1)11 + 12

= (2)12 + (−1)23

= (−9)23 + (2)104

= (20)104 + (−9)231

That is, x = 20, y = −9, and d = 1,
Now set

c = mxb+ nya (mod 24024) = 24971 (mod 24024) = 947.

�





CHAPTER VIII

The Fibonacci Sequence

Abstract. Sequences play an important role in modern mathematics, and
one of the first to investigate them was Leonardo Fibonacci in the twelfth

century A.D. We investigate the famous sequence which perpetuates his

name.

1. Recursively Defined Sequences

Definition 1. Let X be a set. A sequence in X is a function a : N → X. We
normally write an to mean a(n), and the entire function is often denoted by
(an)∞n=1, or simply as (an).

Definition 2. Let (an) be a sequence in R, and let L ∈ R. We say that (an)
converges to L, or that L is the limit of (an), if

for every ε > 0 there exists N ∈ N such that n ≥ N ⇒ |an − L| < ε.

In this case we write lim an = L.

We assume familiarity with the standard properties, and focus on recursively
defined sequences. Suppose that we set a0 = C, a fixed constant value, select a
function f : R → R, and set an+1 = f(an) for every n. This uniquely defines a
sequence (an) of real numbers.

Now it is clear that if we obtain a new sequence (an+1) from (an) by shift-
ing, the limit (should it exist) does not change: lim an+1 = lim an. If (an) is a
recursively defined sequence such that an+1 = f(an) for some continuous func-
tion f , then lim an+1 = f(lim an), so if L = lim an, we have L = f(L). We
use this fact to analyze recursively defined sequences (accept that the following
sequences do converge; proving this is typically harder than computing the limit
of a recursively defined sequence).

Example 3. Define a sequence (an) by a0 = 1 and an+1 = an

2 . Find lim an.

Solution. The first few terms of the sequence are a0 = 1, a1 = 1
2 , a2 = 1/2

2 = 1
4 ,

a3 = 1/4
2 = 1

8 , and so forth; we see that this sequence could have been given as
an = 1

2n . In fact, if L = lim an, then L = L
2 , so 2L = L, so L = 0. �

Example 4. Define a sequence (an) by a0 = 1 and an+1 = an+1
3 . Find lim an.

Solution. In this case, a0 = 1, a1 = 2
3 , a2 = 5

9 , a3 = 14
27 , a4 = 41

81 , and so forth.
We believe that an = (3n+1)/2

3n ; the sequence certainly seems to be approaching
1
2 . In fact, with L = lim an, we have L = L+1

3 , so 3L = L + 1, so 2L = 1, and
L = 1

2 . �
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Example 5. Define a sequence (an) by a0 = 1 and an+1 =
√

1 + an. Find
lim an.

Solution. This sequence formalizes the repeated square root√
1 +

√
1 +

√
1 + . . ..

We have L =
√

1 + L, so L2 = 1+L, and L2−L− 1 = 0. Noting the limit must
be positive, the quadratic formula gives L = 1+

√
5

2 . That is, L is the golden ratio
Φ. The sequence increases to this upper bound. �

Example 6. Define a sequence (an) by a1 = 1 and an+1 = 1 + 1
an

. Find lim an.

Solution. This sequence formalizes the repeated fraction

1 +
1

1 + 1
1+ 1

...

.

Let’s compute the first few terms of this sequence; we will see an interesting
pattern.

• a1 = 1
• a2 = 1 + 1

1 = 1+1
1 = 2

• a3 = 1 + 1
2 = 2+1

2 = 3
2

• a4 = 1 + 2
3 = 3+2

3 = 5
3

• a5 = 1 + 3
5 = 5+3

5 = 8
5

• a6 = 1 + 5
8 = 8+5

8 = 13
8

We see that, in each case, we add the numerator and denominator and put it
over the previous numerator.

We compute that if L = lim an, then L = 1+ 1
L , so L2 = L+1, so L2−L−1 =

0, and L = 1+
√

5
2 . Actually, the sequence jumps back and forth around Φ, with

the even terms less than Φ and the odd terms greater than Φ. �

2. Fibonacci Sequence

Definition 7. Define a sequence (Fn) by setting F1 = 1, F2 = 1, and

Fn+2 = Fn + Fn+1.

Then (Fn) is known as the Fibonacci sequence, after the 12th century mathemati-
cian Fibonacci, who discovered the sequence while investigating the breeding of
rabbits.

The first few terms of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, 13, 21, 44, 65, 109, 174, 283, 475, . . .

Define a sequence (an) by a0 = 1 and an = Fn+1
Fn

. Then a1 = 1, a2 = 2,
a3 = 3

2 , a4 = 5
3 ; look familiar? Now

an+1 =
Fn+2

Fn+1
=
Fn+1 + Fn

Fn+1
= 1 +

1
an

;

so as we have already seen,

lim
Fn+1

Fn
=

1 +
√

5
2

.
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The golden ratio is also involved in the following generating function for the
Fibonacci sequence:

Proposition 8.

Fn =
1√
5

((
1 +

√
5

2

)n

−
(

1−
√

5
2

)n)
.

Solution. The golden ratio is the positive solution to the equation x2−x−1 = 0;
the quadratic formula gives the roots as 1±

√
5

2 . Set

Φ =
1 +

√
5

2
and Ψ =

1−
√

5
2

.

then Φ and Ψ satisfy the above equation, which produces these identities:
• Φ + 1 = Φ2;
• Φ− 1 = 1

Φ ;
• Ψ + 1 = Φ2;
• Ψ− 1 = 1

Ψ ;
• Ψ = − 1

Φ = 1− Φ;
• Φ−Ψ =

√
5.

In light of this, what we wish to show can be rewritten as

Fn =
1√
5

(
Φn −Ψn

)
.

We have F1 = 1 and plugging 1 into the above expression produces

1√
5

(
Φ−Ψ

)
=
√

5√
5

= 1;

therefore the formula is true for n = 1.
By strong induction, assume that for n ≥ 3 we have

Fn−2 =
1√
5

(
Φn−2 −Ψn−2

)
;

Fn−1 =
1√
5

(
Φn−1 −Ψn−1

)
,

Then

Fn = Fn−2 + Fn−1

=
1√
5

(
Φn−2 −Ψn−2

)
+

1√
5

(
Φn−1 −Ψn−1

)
=

1√
5

(
(Φn−2 + Φn−1)− (Ψn−2 + Ψn−1)

)
=

1√
5

(
Φn−2(1 + Φ)−Ψn−2(1 + Ψ)

)
=

1√
5

(
Φn−2(Φ2)−Ψn−2(Ψ2)

)
=

1√
5

(
Φn −Ψn

)
.

This completes the proof. �
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3. Cauchy Sequences

We now supply a formal proof that the sequence of ratios of the Fibonacci
numbers is a Cauchy sequence, and so it does in fact converge.

Definition 9. Let (an) be a sequence of real numbers. We say that (an) is a
Cauchy sequence if for every ε > 0 there exists N ∈ N such that

m,n ≥ N ⇒ |am − an| < ε.

The proof of the next theorem may be found in books on real analysis.

Theorem 10. (Cauchy Convergence Criterion)
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proposition 11. Let (an) be a sequence satisfying

|an+1 − an| <
1
2n

for all n ∈ N. Then (an) is a Cauchy sequence.

Lemma 12. Let m,n ∈ N with 2 < m < n. Then
n∑

i=m+1

1
2i
<

1
2m

<
1
m
.

Proof of Lemma. We prove the first inequality by induction on k = n −m. If
k = 1, then our statement reads 1

2m+1 <
1

2m , which is true.
Suppose that our proposition is true for differences of size k − 1. Then

n∑
i=m+2

1
2i
<

1
2m+1

.

Adding 1
2m+1 to both sides gives

n∑
i=m+1

1
2i
<

2
2m+1

=
1

2m
.

For the second inequality, it suffices to show that for m > 2 we have m < 2m.
For m = 3, we have 3 < 4. By induction, m− 1 < 2m−1. Then m < 2m−1 + 1 <
2m−1 + 2m−1 = 2m. �

Proof of Proposition. Let ε > 0 and let N ∈ N be so large that 1
ε < N . Let

m,n > N ; assume that n > m. Then

|an − am| = |an − an−1 + an−1 − an−2 + · · ·+ am+1 − am|
≤ |an − an−1|+ · · ·+ |am+1 − am|

<
1

2n−1
+ · · ·+ 1

2m

<
1

2m−1

<
1

m− 1
≤ 1
N

< ε.

This shows that (an) is a Cauchy sequence. �



3. CAUCHY SEQUENCES 59

Proposition 13. Define a sequence (an) by

an =
Fn+1

Fn
.

Then (an) is a Cauchy sequence which converges to 1+
√

5
2 .

Proof. To show that (an) is a Cauchy sequence, it suffices to show that

|an+1 − an| <
1

2n−1
.

To do this, we first show that FnFn+1 > 2n−1 for n ≥ 3. For n = 3, we have
F3F4 = 2 · 3 > 4. By induction, assume that Fn−1Fn > 2n−2. Clearly (Fn) is a
nondecreasing sequence, so

FnFn+1 = F 2
n + FnFn−1 ≥ 2FnFn−1 > 2n−1.

Next we show that |FnFn+2 − F 2
n+1| = 1 for n ≥ 1. For n = 1, we have

|F1F3−F 2
2 | = 2−1 = 1. By induction, assume that |Fn−1Fn+1−F 2

n | = 1. Then

|FnFn+2 − F 2
n+1| = |Fn(Fn + Fn+1)− F 2

n+1|
= |F 2

n + FnFn+1 − F 2
n+1|

= |F 2
n − Fn+1(Fn+1 − Fn)|

= |F 2
n − Fn+1Fn−1|

= 1.

Now

|an+1 − an| =
∣∣∣∣Fn+2

Fn+1
− Fn+1

Fn

∣∣∣∣
=

∣∣∣∣Fn+2Fn − F 2
n+1

FnFn+1

∣∣∣∣
=

∣∣∣∣ 1
FnFn+1

∣∣∣∣
<

1
2n−1

.

Since (an) is a Cauchy sequence, it converges; let L = lim(an). Since an is
positive for all n, L ≥ 0. Now

an+1 =
Fn+2

Fn+1
=
Fn + Fn+1

Fn+1
= 1 +

Fn

Fn+1
= 1 +

1
an
.

Taking the limit of both sides of this equation, we have L = 1 + 1
L . Thus

L2 − L− 1 = 0.

The positive solution to this quadratic equation is

L =
1 +

√
5

2
.

�
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Proposition 14. Let b ∈ R, b ≥ 1, and define a sequence (Gn) by G1 = 1,
G2 = 1, and Gn+2 = Gn + bGn+1. Define a sequence (cn) by

cn =
Gn+1

Gn
.

Then (cn) is a Cauchy sequence.

Proof. To show that (cn) is a Cauchy sequence, it suffices to show that

|cn+1 − cn| <
b

2n−1
.

To do this, we first show that GnGn+1 > 2n−1 for n ≥ 3. For n = 3, we have
G3G4 = (b + 1)(b2 + b + 1) > 4. By induction, assume that Gn−1Gn > 2n−2.
Clearly (Gn) is a nondecreasing sequence, so

GnGn+1 = bG2
n +GnGn−1 ≥ G2

n +GnGn−1 ≥ 2GnGn−1 > 2n−1.

Next we show that |GnGn+2 − G2
n+1| = b for n ≥ 1. For n = 1, we have

|G1G3 −G2
2| = b+ 1− 1 = b. By induction, assume that |Gn−1Gn+1 −G2

n| = b.
Then

|GnGn+2 −G2
n+1| = |Gn(Gn + bGn+1)−G2

n+1|
= |G2

n + bGnGn+1 −G2
n+1|

= |G2
n −Gn+1(Gn+1 − bGn)|

= |G2
n −Gn+1Gn−1|

= b.

Now

|cn+1 − cn| =
∣∣∣∣Gn+2

Gn+1
− Gn+1

Gn

∣∣∣∣
=

∣∣∣∣Gn+2Gn −G2
n+1

GnGn+1

∣∣∣∣
=

∣∣∣∣ b

GnGn+1

∣∣∣∣
<

b

2n−1
.

Thus (cn) is a Cauchy sequence. �



CHAPTER IX

Cubic Equations and Quartic Equations

1. The Story

Various solutions for solving quadratic equations ax2 + bx+ c = 0 have been
around since the time of the Babylonians. A few methods for attacking special
forms of the cubic equation ax3 +bx2 +cx+d = 0 had been investigated prior to
the discovery and development of a general solution to such equations, beginning
in the fifteenth century and continuing into the sixteenth century, A.D. This story
is filled with bizarre characters and plots twists, which is now outlined before
describing the method of solution.

The biographical material here was lifted wholesale from the MacTutor His-
tory of Mathematics website, and then editted. Other material has been derived
from Dunham’s Journey through Genius.

1.1. Types of Cubics. Zero and negative numbers were not used in fif-
teenth century Europe. Thus, cubic equations were viewed to be in different
types, depending on the degrees of the terms and there placement with respect
to the equal sign.

• x3 +mx = n “cube plus cosa equals number”
• x3 +mx2 = n “cube plus squares equals number”
• x3 = mx+ n “cube equals cosa plus number”
• x3 = mx2 + n “cube equals squares plus number”

Mathematical discoveries at this time were kept secret, to be used in pub-
lic “debates” and “contests”. For example, the method of depressing a cubic
(eliminating the square term by a linear change of variable) was discovered inde-
pendently by several people. The more difficult problem of solving the depressed
cubic remained elusive.

1.2. Luca Pacioli. In 1494, Luca Pacioli published Summa de arithmetica,
geometria, proportioni et proportionalita. The work gives a summary of the
mathematics known at that time although it shows little in the way of original
ideas. The work studies arithmetic, algebra, geometry and trigonometry and,
despite the lack of originality, was to provide a basis for the major progress in
mathematics which took place in Europe shortly after this time. The book ad-
mittedly borrows freely from Euclid, Boethius, Sacrobosco, Fibonacci, et cetera.

In this book, Pacioli states that the solution of the cubic is impossible.

1.3. Scipione del Ferro. The first known mathematician to produce a
general solution to a cubic equation is Sipione del Ferro. He knew that the
problem of solving the general cubic could be reduced to solving the two cases
x3 + mx = n and x3 = mx + n, where m and n are positive numbers, and del
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Ferro may have solved both cases; we do not know for certain, because his results
were never published.

We know that del Ferro was appointed as a lecturer in arithmetic and ge-
ometry at the University of Bologna in 1496 and that he retained this post for
the rest of his life. No writings of del Ferro have survived. We do know however
that he kept a notebook in which he recorded his most important discoveries.
This notebook passed to del Ferro’s son-in-law Hannibal Nave when del Ferro
died in 1526.

On his deathbed, del Ferro revealed at least part of his secret, the solution
to the “cube plus cosa equals number” problem, to his student, Fior.

1.4. Niccolo Tartaglia. Niccolo Fontana, known as Tartaglia, was born in
Brescia in 1499 or 1500. His father was murdered when he was six, and plunged
the family into total poverty.

Niccolo was nearly killed as a teenager when, in 1512, the French captured
his home town and put it to the sword. The twelve year old Niccolo was dealt
horrific facial sabre wounds by a French soldier that cut his jaw and palate. He
was left for dead and even when his mother discovered that he was still alive she
could not afford to pay for any medical help. However, his mother’s tender care
ensured that the youngster did survive, but in later life Niccolo always wore a
beard to camouflage his disfiguring scars and he could only speak with difficulty,
hence his nickname Tartaglia, or stammerer.

He moved to Venice in 1534. As a lowly mathematics teacher in Venice,
Tartaglia gradually acquired a reputation as a promising mathematician by par-
ticipating successfully in a large number of debates.

Fior began to boast that he was able to solve cubics and a challenge be-
tween him and Tartaglia was arranged in 1535. In fact Tartaglia had previously
discovered how to solve one type of cubic equation, the “cube + squares equals
number” type. For the contest between Tartaglia and Fior, each man was to sub-
mit thirty questions for the other to solve. Fior was supremely confident that
his ability to solve cubics would be enough to defeat Tartaglia but Tartaglia
submitted a variety of different questions, exposing Fior as an, at best, mediocre
mathematician. Fior, on the other hand, offered Tartaglia thirty opportunities
to solve the “cube plus cosa” problem, since he believed that he would be unable
to solve this type, as in fact had been the case when the contest was set up.
However, in the early hours of February 13, 1535, inspiration came to Tartaglia
and he discovered the method to solve ’cube equal to numbers’. Tartaglia was
then able to solve all thirty of Fior’s problems in less than two hours. As Fior
had made little headway with Tartaglia’s questions, it was obvious to all who
was the winner. Tartaglia didn’t take his prize for winning from Fior, however,
the honor of winning was enough.

1.5. Girolamo Cardano. Girolamo or Hieronimo Cardano’s name was
Hieronymus Cardanus in Latin and he is sometimes known by the English
version of his name Jerome Cardan. He was the illegitimate child of a
lawyer/mathematician, Fazio Cardano. He was a brilliant physician and math-
ematician who loved to gamble, and generally had a fascinating, though often
tragic, life. Among other travails, he was kept out of the College of Physicians
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because of his illegitimate birth; his wife died young; his favorite son was exe-
cuted for the murder of his wife; his other son stole large sums of money from
him; and he was jailed by the Inquisition.

In 1539,Cardan was a public lecturer of mathematics at the Piatti Foun-
dation in Milan, and was aware of the problem of solving cubic equations; he
had taken Pacioli at his word and assumed that, as Pacioli stated in the Suma
published in 1494, solutions were impossible.

Cardan was greatly intrigued when he learned of the contest between Fior
and Tartaglia, and he immediately set to work trying to discover Tartaglia’s
method for himself, but was unsuccessful. A few years later, in 1539, he con-
tacted Tartaglia, through an intermediary, requesting that the method could be
included in a book he was publishing that year. Tartaglia declined this opportu-
nity, stating his intention to publish his formula in a book of his own that he was
going to write at a later date. Cardan, accepting this, then asked to be shown
the method, promising to keep it secret. Tartaglia, however, refused.

An incensed Cardan now wrote to Tartaglia directly, expressing his bitter-
ness, challenging him to a debate but, at the same time, hinting that he had been
discussing Tartaglia’s brilliance with the governor of Milan, Alfonso d’Avalos, the
Marchese del Vasto, who was one of Cardan’s powerful patrons. On receipt of
this letter, Tartaglia radically revised his attitude, realizing that acquaintance
with the influential Milanese governor could be very rewarding and could pro-
vide a way out of the modest teacher’s job he then held, and into a lucrative
job at the Milanese court. He wrote back to Cardan in friendly terms, angling
for an introduction to the Signor Marchese. Cardan was delighted at Tartaglia’s
new approach, and, inviting him to his house, assured Tartaglia that he would
arrange a meeting with d’Avalos.

So, in March 1539, Tartaglia left Venice and travelled to Milan. To
Tartaglia’s dismay, the governor was temporarily absent from Milan but Car-
dan attended to his guest’s every need and soon the conversation turned to the
problem of cubic equations. Tartaglia, after much persuasion, agreed to tell Car-
dan his method, if Cardan would swear never to reveal it and furthermore, to
only ever write it down in code so that on his death, nobody would discover the
secret from his papers. The oath which Cardano swore is reportedly:

I swear to you, by God’s holy Gospels, and as a true man of honor, not only
never to publish your discoveries, if you teach me them, but I also promise you,
and I pledge my faith as a true Christian, to note them down in code, so that
after my death no one will be able to understand them.

Tartaglia divulged his formula in the form of a poem, to help protect the
secret, should the paper fall into the wrong hands.

By the time he had reached Venice, Tartaglia was sure he had made a mistake
in trusting Cardan and began to feel very angry that he had been induced to
reveal his secret formula. When Cardan wrote to him in a friendly manner
Tartaglia rebuffed his offer of continued friendship and mercilessly ridiculed his
books on the merest trivialities.
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1.6. Lodovico Ferrari. Lodovico Ferrari was sent, as a teenager, to be the
servant of Cardano. However, when Cardano discovered that the boy could read
and write, he made him his assistant, and quickly learned that Ferrari was quite
talented. Ferrari became Cardano’s mathematical apprentice.

Based on Tartaglia’s formula, Cardan and Ferrari made remarkable progress
finding proofs of all cases of the cubic and, even more impressively, solving the
quartic equation. Tartaglia made no move to publish his formula despite the
fact that, by now, it had become well known that such a method existed.

One of the first problems that Cardan hit was that the formula sometimes
involved square roots of negative numbers even though the answer was a ’proper’
number. In August 1539 Cardan wrote to Tartaglia:

I have sent to enquire after the solution to various problems for which you
have given me no answer, one of which concerns the cube equal to an unknown
plus a number. I have certainly grasped this rule, but when the cube of one-third
of the coefficient of the unknown is greater in value than the square of one-half
of the number, then, it appears, I cannot make it fit into the equation.

Indeed Cardan gives precisely the conditions here for the formula to involve
square roots of negative numbers. Tartaglia by this time greatly regretted telling
Cardan the method and tried to confuse him with his reply (although in fact
Tartaglia, like Cardan, would not have understood the complex numbers now
entering into mathematics):

... and thus I say in reply that you have not mastered the true way of solving
problems of this kind, and indeed I would say that your methods are totally false.

Cardan and Ferrari travelled to Bologna in 1543 and learnt from Hannibal
Nave that it had been del Ferro, not Tartaglia, who had been the first to solve the
cubic equation. Cardan felt that although he had sworn not to reveal Tartaglia’s
method surely nothing prevented him from publishing del Ferro’s formula. In
1545 Cardan published Artis magnae sive de regulis algebraicis liber unus, or Ars
magna, as it is more commonly known, which contained solutions to both the
cubic and quartic equations and all of the additional work he had completed on
Tartaglia’s formula. Del Ferro and Tartaglia are credited with their discoveries,
as is Ferrari, and the story written down in the text.

It is to Cardan’s credit that, although one could not expect him to un-
derstand complex numbers, he does present the first calculation with complex
numbers in Ars Magna. Solving a particular cubic equation, he writes

Dismissing mental tortures, and multiplying 5 +
√
−15 by 5 −

√
−15, we

obtain 25− (−15). Therefore the product is 40 ... and thus far does arithmetical
subtlety go, of which this, the extreme, is, as I have said, as subtle as it is
useless.

1.7. Rapheal Bombelli. In 1572, Rapheal Bombelli wrote his book Al-
gebra, in which explicitly uses negative numbers and zero. Moreover, he shows
how manipulating complex numbers can help arrive at real solutions to cubic
equations, thus demonstrating that, although they may be subtle, they are far
from useless.
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2. Solution of Quadratic Equations

Some version of the quadratic formula has been available to most advanced
cultures of the last three thousand years. Let us review its derivation.

A polynomial is monic if the leading coefficient is 1. Two equations are
equivalent if they have the same solution set.

Let ax2 + bx+ c = 0 be a general quadratic equation; Our method of solu-
tion is known as completing the square. First we produce an equivalent monic
equation, and then we introduce a new term to create the square of a linear
polynomial:

ax2 + bx+ c = 0 ⇔ x2 +
b

a
x = − c

a

⇔ x2 +
b

a
x+

(
b

2a
)2 = (

b

2a

)2

− c

a

⇔
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇔ x+
b

2a
= ±

√
b2 − 4ac

2a

⇔ x =
−b±

√
b2 − 4ac

2a
.

Notice that the fourth equation can be rewritten as(
x+

b

2a

)2

+
4ac− b2

4a2
= 0.

Setting y = x+ b
2a and n = 4ac−b2

4a2 , rewrite this as

y2 + n = 0.

This is depressed quadratic equation; the degree one term has be eliminated by
the substitution x→ y − b

2a , which is known as a linear change of variables.
The discriminant of the quadratic equation is

∆ = b2 − 4ac;

this determines the number of real roots. There are three cases:
(a) if b2 − 4ac > 0, there are two real roots;
(b) if b2 − 4ac = 0, there is one real root;
(c) if b2 − 4ac < 0, there are no real roots.

We point out here that negative numbers and there square roots were not
accepted as actual solutions in antiquity. To some extent, this is justified, since
the search for real solutions to such an equation was not significantly compro-
mised by excluding these numbers. This situation changes upon consideration
of cubic equations.
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3. Depressing Cubic Equations

Let f(x) = ax3 + bx2 + cx + d be a general cubic polynomial; we wish to
solve f(x) = 0. If we can find one zero r of the polynomial f(x), we can divide
(x − r) into f(x) to obtain a quadratic polynomial, whose zeros can be found
using the quadratic formula.

A depressed cubic equation of the type “cube plus cosa equals number” is an
equation of the form

x3 +mx = n.

We wish to take the general cubic equation f(x) = 0 and find a different de-
pressed cubic equation whose solution will give us a solution to f(x) = 0.

Clearly we can divide by a to obtain a monic equation x3+ b
ax

2+ c
ax+ d

a = 0;
in this way, we can assume that a = 1. We wish to find a linear change of variable
that will produce an equation which lacks the quadratic term.

To discover how to do this, substitute y − h for x and multiply:

ax3 + bx2 + cx+ d = a(y − h)3 + b(y − h)2 + c(y − h) + d

= a(y3 − hy2 + h2y − h3) + b(y2 − 2hy + h2) + c(y − h) + d

= ay3 − 3ahy2 + 3ah2y − h3 + by2 − 2hy + h2 + cy − ch+ d

= ay3 + (b− 3ah)y2 + (3ah2 − 2h)y + (d− ch).

Now we see that if we set h = b
3a , we obtain the desired result of eliminating the

quadratic term.
Thus, to solve cubic equations, we may assume that the equation is given in

the form x3 +mx = n.
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4. Solving the Depressed Cubic

Consider the depressed cubic equation

x3 +mx = n.

The key idea of the solution method is to write x as a difference of two quantities,
x = t − u. We wish to find appropriate quantities t, u ∈ R such that r = t − u,
where r is a solution to this equation.

By the binomial theorem, we have

(t− u)3 = t3 − 3t2u+ 3tu2 − u3.

Thus

t3 − u3 = (t− u)3 + 3t2u− 3tu2

= (t− u)3 + 3tu(t− u).

Note that if x = t − u, m = 3tu, and n = t3 − u3, this equation becomes
x3 +mx = n. This reduces the problem to solving the system of equations

m = 3tu;(1)

n = t3 − u3.(2)

Equation (1) gives
u =

m

3t
.

Substitute this into equation (2) to obtain

t3 − m3

27t3
= n.

Subtract n from both sides and multiply through by t3 to get

t6 − nt3 − m3

27
= 0.

Now the quadratic formula gives

t3 =
n±

√
n2 + 4m3

27

2

=
n

2
±

√
n2

4
+
m3

27
.

Therefore,

t =
3

√
n

2
±

√
n2

4
+
m3

27
.

Now u3 = t3 − n, so

u =
3

√
−n

2
±

√
n2

4
+
m3

27
.

Finally, x = t− u, so

x =
3

√
n

2
±

√
n2

4
+
m3

27
−

3

√
−n

2
±

√
n2

4
+
m3

27
.
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Upon examining the above equations, we see two ± signs in the expression
for x, which may lead one to believe we have found four solutions to a cubic
polynomial. However, to of them are the same.

Consider the solution to be in the form x = 3
√
a± b− 3

√
−a± b. The solution

with two minus signs equals the solution with two negative signs, because factor
out the negative sign gives

3
√
a− b− 3

√
−a− b = (−1) 3

√
−a+ b− (−1) 3

√
a+ b = 3

√
a+ b− 3

√
−a+ b.

Memorizing this formula is unnecessary if we remember the technique. We
let x = t− u, so that x3 +mx = n becomes (t− u)3 + 3tu(t− u) = t3 − u3.

(1) Set 3tu = m and t3 − u3 = n.
(2) Solve the first equation for u to get u = m

3t .
(3) Plug this into the second equation to get t3 = n+ (m

3t )
3.

(4) Multiply by t3 to get t6 − nt3 − (m
3 )3 =.

(5) Complete the square to get t3 = n
2 ±∆.

(6) Use u3 = t3 − n to get u3 = −n
2 ±∆;

(7) Take cube root and set x = t− u.

Example 1. (A Typical Example)
Solve x3 + 15x = 22.

Solution. Let 3tu = 15 and t3−u3 = 22. Then u = 5
t , so t3− 125

t3 = 22. Therefore
t6 − 22t3 − 125 = 0, so by the quadratic formula,

t3 =
22±

√
484 + 500
2

= 11±
√

246.

Then u3 = −11±
√

246, so

x =
3
√

11±
√

246− 3
√
−11±

√
246.

�

Example 2. (Cardano’s Example)
Solve x3 + 6x = 20.

Solution. Let 3tu = 6 and t3 − u3 = 20. Then u = 2
t , so t3 − 8

t3 = 20, so
t6 − 20t3 − 8 = 0. By the quadratic formula,

t3 =
20±

√
400 + 32
2

= 10±
√

108.

Taking the positive value for t, applying u3 = t3−20, and taking the appropriate
cube roots, we have

x = t− u =
3
√

10 +
√

108− 3
√
−10 +

√
108.

Note that this is a real number.
A more modern solution starts by setting f(x) = x3 + 6x − 20 and seeking

solutions to f(x) = 0. We note that f(2) = 23 + 6(2) − 20 = 0, so x = 2 is a
solution. By the Factor Theorem, (x−2) divides f(x), and dividing we find that

f(x) = (x− 2)(x2 + 2x+ 10) = (x− 2)(x− (−1 + 3i))(x− (−1− 3i)).
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Note that the only real zero of f is 2; thus, we have no choice but to conclude
that

3
√

10 +
√

108− 3
√
−10 +

√
108 = 2.

�

Example 3. (Bombelli’s Example)
Solve x3 − 15x = 4.

Solution. Let 3tu = −15 and t3 − u3 = 4. Thus u = − 5
t , so t3 + 125

t3 = 4. From
this, t6 − 4t3 + 125 = 0, so, taking the positive square root, we have

t3 =
4 +

√
16− 500
2

= 2 +
√

4− 125 = 2 +
√
−121.

At this point, instead of asserting the irrelevance of the problem, Bombelli con-
tinues as if

√
−1 is a perfectly acceptable quantity. He notes that

(2 +
√
−1)3 = 8 + 12

√
−1− 6−

√
−1 = 2 + 11

√
−1 = 2 +

√
−121.

Thus if t = 2+
√
−1, then t3 = 2+

√
−121. Continuing, we have u = −2+

√
−11,

so
x = t− u = (2 +

√
−121)− (−2 +

√
−121) = 4.

One verifies that 4 is indeed a solution to the original cubic equation; thus a real
solution is attained by traversing through the realm of complex numbers. �

5. Depressing a Quartic Equation

The general quartic equation can be depressed in the same manner as the
cubic. Consider

ax4 + bx3 + cx2 + dx+ e = 0.
We again want a linear change of variables that will eliminate the cubic term.
Here, the substitution x 7→ (x− b

4a works.

Problem 1. Let

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0.

Show that the substitution x 7→ (x− an−1
nan

) eliminates the term of degree (n−1).

6. Solving the Depressed Quartic

Consider the polynomial equation

x4 + px2 + qx+ r = 0.

Complete the square to obtain

(x2 + p)2 = px2 − qx− r + p2.

Let y ∈ R and add 2y(x2 + p) + y2 to both sides to get

(*) (x2 + p+ y)2 = (p+ 2y)x2 + (p2 − r + 2py + y2).

The right hand side becomes a quadratic in x we can choose y so that it is a
perfect square; this is done by making the discriminant equal to zero:

q2 − 4(p− r + 2py + y2) = 0.

Rewrite this as

(q2 − 4p3 + 4pr) + (8r − 16p2)y − 20py2 − 8y3 = 0.
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This is a cubic in y, and can be solved. With this value for y, take the square
root of both sides of (*) to obtain a quadratic in x, which can also be solved.

7. Graphs of Cubics

7.1. Backdrop. Cardano had several cases for solving cubics, placing the
monomials on the appropriate side of the equation to create positive coefficients.
As it turns out, the sign of the constant term plays no role in the computation,
so the main cases were:

(a) x3 = mx+ n (cube equals cosa plus number)
(b) x3 +mx = n (cube plus cosa equals number)

Analytic geometry on in cartesian coordinates had not been invented at
the time, so Cardano had no idea that these two cases correspond to distinctly
different geometric interpretations for the graph of the cubic. We investigate
this in modern notation using Calculus.

7.2. The Leading Coefficient. Consider the generic cubic polynomial

f(x) = ax3 + bx2 + cx+ d.

If a > 0, then limx→−∞ f(x) = −∞, and limx→∞ f(x) = ∞; if a < 0, then
limx→−∞ f(x) = ∞, and limx→∞ f(x) = −∞ Thus by the Intermediate Value
Theorem, f has at least one real zero. By the Factor Theorem, if f(r) = 0, then
f(x) = (x − r)q(x), where q is a quadratic polynomial, which we can find by
polynomial division, and thus find the other two zeros (which may be real or
complex) using the quadratic formula.

We wish to solve f(x) = 0, and we realize that if we divide through by a, the
zeros of the resulting polynomials are the same as the original. Thus, without
loss of generality, we assume a = 1.

7.3. The Square Coefficient. Consider the polynomial

f(x) = x3 + bx2 + cx+ d.

Note that limx→−∞ f(x) = −∞, and limx→∞ f(x) = ∞. Next we wish to
discover the role of b in the graph of f .

By differentiation,

f ′(x) = 3x2 + 2bx+ cand f ′′(x) = 6x+ 2b.

If f ′′(x) = 0, then 6x + 2b = 0, so x = − b
3 . Thus f has an inflection point at

(− b
3 , f(− b

3 )). Also, b = 0 if and only if the inflection point of f lies on the y-axis.
So, to eliminate the inflection point of f , we shift the graph of f right by b

3 . The
graph of f(x− b

3 ) is the graph of f shifted so that the inflection point is on the
y-axis. If we find the zeros of f(x− b

3 ), we obtain the zeros of f subtracting b
3 .

It turns out that

f(x− b

3
) = x3 − 1

3
(b2 − 3c)x− 1

27
(b3 − 3b2 + 9bc− 27d).

Without loss of generality, we now assume that b = 0.
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7.4. The Cosa Coefficient. Consider the polynomial

f(x) = x3 + cx+ d.

The graph of f has an inflection point on the y-axis. We wish to identify the
role that c plays in the graph of f .

By differentiation,
f ′(x) = 3x2 + c.

Thus f ′(0) is the slope of the line tangent to the graph of f at its inflection
point.

If c = 0, then f has a horizontal tangent at its inflection point.
If c ≥ 0, then f is increasing and has no local minimum or maximum; in

this case, f has exactly one x-intercept, and so, exactly one real zero and two
complex zeros. This is the “cube + cosa = number” case.

If c < 0, we set f ′(x) = 0 and obtain x = ±
√
− c

3 ; thus f has a local
maximum at −

√
− c

3 and a local minimum at
√
− c

3 . This is the “cube = cosa
+ number” case. In this case, we sometimes have three distinct real zeros, and
sometimes do not. We wish to discover a condition determining the number of
real zeros.

7.5. The Constant Coefficient. Consider the polynomial

g(x) = x3 + cx.

We have an excellent idea of its graph. It is an odd function, and thus has
symmetry about the origin, and it has an inflection point at the origin. If c ≥ 0,
it is increasing, and if c < 0, it has zeros at x = ±

√
c with local extrema at

x = ±
√
− c

3 .
If we shift this graph up by d (down if d < 0), the corresponding function is

f(x) = g(x) + d.
Assume that c < 0. Let

h = g

(√
− c

3

)
=

2c
3

√
− c

3
.

This is the height (depth) of the local maximum (minimum). If we vertically
shift the graph of g by less than h, we have three zeros; if we shift by h, we have
one single zero and a double zero; if we shift by d > h, we have a unique zero.
That is:

(a) |d| < |h| ⇒ three distinct real zeros
(b) |d| = |h| ⇒ one single real zero and one double real zero
(c) |d| > |h| ⇒ a unique real zero and two complex zeros

Now

|d| < |h| ⇔ d2 < h2 − 4c2

9
(− c

3
) = −4c3

27

⇔ d2

4
+
c3

27
.

The discriminant of f is

D =
d2

4
+
c3

27
.

Note that if c ≥ 0, then D ≥ 0. Thus, for any c, we have
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(a) D < 0 ⇒ three distinct real zeros
(b) D = 0 ⇒ one single real zero and one double real zero, or a triple zero
(c) D > 0 ⇒ a unique real zero and two complex zeros



CHAPTER X

Ellipses

Abstract. Kepler realized that assigning elliptical orbits to the planets
greatly simplified the description of their motion. Here we list basic facts

about ellipses in modern notation.

1. Ellipses

Definition 1. An ellipse is the set of points in a plane such that the sum of the
distances from the point to two given points, called foci, is a constant, called the
common sum.

The midpoint between the foci is called the center. The line through the
foci is called the major axis. The line perpendicular to the major axis through
the center is called the minor axis. The points of intersection of the major axis
with the ellipse are called vertices. The points of intersection of the minor axis
with the ellipse are called covertices.

We also call the distance between the vertices the major axis, and half of it
is the semimajor axis. Thus the semimajor axis is the distance from the center
to a vertex.

2. Kepler’s Laws of Planetary Motion

Law 1: The planets move in elliptical orbits with the sun at one vertex.
Law 2: The planets sweep out equal areas in equal amounts of time.
Law 3: The squares of the periods of the planets are proportional to the

cubes of their semimajor axes.

73



74 X. ELLIPSES

3. Equations

Proposition 2. Consider the ellipse with foci (±c, 0), where c > 0, and common
sum s. Then the center is (0, 0), the major axis is y = 0, the minor axis is x = 0,
the vertices are (±a, 0), the covertices are (0,±b), and the equation of the ellipse
is

x2

a2
+
y2

b2
= 1,

where
2a = s and c2 = a2 − b2 .

Proof. The midpoint between the foci is clearly (0, 0), so this is the center.
Moreover, the line through (±c, 0) is the x-axis, so its equation is y = 0, and the
perpendicular line through the origin is the y-axis, which is x = 0.

Suppose that the equation of the ellipse is as stated. If (x, y) is on the
intersection of the locus of this equation with the line y = 0, then x2

a2 = 1, so
x = ±a; thus the vertices are (±a, 0). Similarly, the covertices are (0,±b).

Now from the definition of an ellipse, the distance from (a, 0) to (c, 0) plus
the distance from (a, 0) to (−c, 0) equals s, that is,

s = (a− c) + (a+ c) = 2a.

Moreover, the distance from (0, b) to (c, 0) plus the distance from (0, b) to (−c, 0)
equals s. Thus

s =
√

(c− 0)2 + (0− b)2 +
√

(−c− 0)2 + (0− b)2 = 2
√
c2 + b2.

Since s = 2a, this gives a =
√
c2 + b2, so a2 = c2 + b2, which we rewrite as

c2 = a2− b2. It remains to derive the equation of the ellipse from the definition.
Let (x, y) be an arbitrary point on the ellipse; from the definition, we have√

(x− c)2 + (y − 0)2 +
√

(x− (−c))2 + (y − 0)2 = s.

Subtracting
√

(x+ c)2 + y2 from both sides and squaring gives

(x− c)2 + y2 = s2 + (x+ c)2 + y2 − 2s
√

(x+ c)2 + y2.

Rearranging this gives

2s
√

(x+ c)2 + y2 = s2 + (x+ c)2 − (x− c)2 = s2 + 4cx.

Dividing by 2s and squaring again produces

x2 + 2cx+ c2 + y2 =
s2

4
+ 2cx+

4c2x2

s2
.

Cancelling 2cx and using that s2 = −2a2 and c2 = a2 − b2 leads us to

x2 + a2 − b2 + y2 = a2 +
(a2 − b2)x2

a2
= a2 + x2 − b2x2

a2
.

Adding b2x2

a2 − x2 − a2 + b2 to both sides gives

b2x2

a2
+ y2 = b2.

Finally, dividing by b2 gives
x2

a2
+
y2

b2
= 1.
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�

4. Eccentricity

The eccentricity of an ellipse is

e =
c

a
=

distance between foci
distance between vertices

.

Thus c = ae.
For an ellipse with a > b, we can compute b2 in terms of a and e as

c2 = a2 − b2 ⇒ b2 = a2 − c2 = a2 − a2e2 = a2(1− e2).

The equation of the ellipse centered at the origin with semimajor axis a and
eccentricity e is

x2

a2
+

y2

a2(1− e2)
= 1.

5. Area

Let’s use calculus to compute the area of an ellipse with equation x2

a2 + y2

b2 = 1.
Solving for y gives

y = b

√
1− x2

a2
=
b

a

√
a2 − x2.

Integrating from −a to a gives the area of the upper half of the ellipse:∫ a

−a

b

a

√
a2 − x2 dx =

b

a

∫ a

−a

√
a2 − x2 dx =

b

a

[
1
2
πa2].

We recognize the latter integral as that of a a semicircle of radius a, giving the
stated value. So the area of the ellipse is double this:

A = πab .

6. Reflectivity

Proposition 3. Consider an ellipse with foci F1 and F2. Let P be a point on
the ellipse and let L0 be the line through P tangent to the ellipse. Let L1 be the
line through F1 and P and let L2 be the line through F2 and P . Then the angle
between L0 and L1 equals the angle between L0 and L2.

Remark 4. This says that a wave emitted from one focus bounces off the surface
and is transmitted to the other focus.





CHAPTER XI

Analytic Geometry

• René Descartes (French 1596-1650)
• Pierre de Fermat (French 1601-1665)
• Blaise Pascal (French 1623-1662)

René Descartes (French 1596-1650) was the author of mathematical stud-
ies and philosophical contemplations. He additionally undertook the construc-
tion of optical equipment.

He worked on the book Le Monde for four years, but as it neared comple-
tion, he forswore publication after hearing of the Galileo’s experience with the
Inquisition.

He published A Discourse on the Method of Rightly Conducting the Reason
and Seeking Truth in the Sciences in 1637. This work included three appendices:

(1) La Dioptrique: a work on optics
(2) Les Météores: a work on meteorology
(3) La Gèométrie: a work on mathematics using coordinates to combine

algebra and geometry, i.e., analytic geometry
Descartes on tangents.
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CHAPTER XII

Power Series

Historical Background
Bonaventura Cavalieri (Italian 1598-1647)
• Introduced logarithms into Italy
• Wrote books on mathematics, optics, and astronomy
• Wrote Geometria indivisibilibus, published 1646, devoted to the method

of indivisibles (parallel line segments in a plane region, of parallel region
constituting a volume) producing Cavalieri’s principles.

Cavalieri’s principles are:
(a) If two planar pices are included between a pair of parallel lines, and if

the lengths of the two segments cut by them on any line parallel to the
including lines are always in a given ratio, then the areas of the two
planar pieces are also in this ratio.

(b) If two solids are included between a pair of parallel palnes, and if the
areas of the two sections cut by them on any plane parallel to the
including planes are always in a given ratio, then the volumes of the
two solids are also in this ratio.

John Wallis (English 1619-1703)
• Conics as degree two equations
• Extended methods of Descartes and Cavalieri
• Introduced symbol ∞
• Computed

∫ 1

0

√
1− x2 dx as an infinite product

• Computed arc lengths
Isaac Barrow (English 1630 - 1677)
• Proposed the “differential triangle”, which is similar to Fermat’s

method but emphasizing slope.
• States and proved a version of the Fundamental Theorem of Calculus

in Lectiones optical et geometrical (1670)
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Isaac Newton (English 1642-1727)
• (1665) Early discoveries at Cambridge (1665-1666)

– Generalized binomial theorem
– Method of Fluxions (differential calculus)
– Optics
– Gravitation

• (1665) Compares decimal numbers to power series of variables with the
analogy series:algebra::decimal:arithmetic

• (1668) Quadrature of the Hyperbola, published by Mercator in 1668∫ x

0

dt

1 + t
= x− x2

2
+
x3

3
− x4

4
(= log(1 + t))

• (1669) Barrow resigned Lucasion chair, which was taken over by New-
ton. As such, Newton had to give lectures: “If he had an audience,
they lasted 30 minutes; otherwise he spoke to the walls for 15 minutes
and then left.”

• (1671) Method of Fluxions written, but not published until 1736
• (1675) Corpuscular Theory of Light [Huygen’s developed the wave the-

ory]
• (1679) Verified gravitational equation F ∼ m1m2

r2 , and derived Kepler’s
laws of planetary motion from this.

• (1684) Halley convinced him to write ... wrote first book of Philosohiae
naturalis principia mathematica

• (1687) Published at Halley’s expense
Gottfried Leibniz (German 1646-1716)
• Diplomat, philosopher, lawyer
• Developed Calculus separately from Newton
• Notation: dy

dx ,
∫
y dx (

∫
is an “S” from Latin word “summa”, as a sum

of Cavalieri’s indivisibles)
• Introduced the word “function” and was the first to think in function

terms.
• Distinction between algebraic and transcendental functions
• Preferred “closed form” to infinite series
• Also developed the theory of determinants

The views of Newton and Leibnitz differ on integration:∫
f(x) dx means

{
Leibniz: find the closed form antiderivative
Newton: express f(x) as a power series and lift each term
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1. Sequences

A sequence of real numbers is a function

a : N → R;

if n ∈ N, we typically write an instead of a(n). We denote the sequence a : N → R
by (an).

Let (an) be a sequence and let L ∈ R. We say that (an) converges to L if
for every ε > 0 there exists N ∈ N such that

N < n⇒ |an − L| < ε.

If a sequence converges to a real number L, we say it is convergent, and we
say that L is the limit of the sequence; we may write

L = lim
n→∞

an.

It is a fact that limits, when they exist, are unique.
If a sequence does not converge to a real number L, it is divergent.
One may form sums and products of sequences:

(an) + (bn) = (an + bn)

(an)(bn) = (anbn)

If (an) converges to L1 and bn converges to L2, then (an) + (bn) converges to
L1 + L2 and (an)(bn) converges to L1L2.

If (an) is nonzero and converges to L, then

lim
n→∞

1
an

=
1
L
.

Let (an) be a sequence. We say (an) is increasing if am ≤ an whenever
m ≤ n; we say that (an) is decreasing if am ≥ an whenever m ≤ n; we say that
(an) is monotone if it is either increasing or decreasing. We say that (an) is
bounded if there exists a positive real number B such that an ∈ [−B,B] for all
n ∈ N.

Fact 1. (Bounded Monotone Convergence Rule)
A bounded monotone sequence of real numbers converges.

Fact 2. (Squeeze Law)
If (an) and (bn) both converge to L, and an ≤ cn ≤ bn for all n ∈ N, then (cn)
converges to L.
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2. Series

Let (an) be a sequence. Then nth partial sum of this series is

sn =
n∑

i=0

.

A series is a sequence of the form (sn), where sn is the nth partial sum of
some sequence (an). Such a series may be denoted by

∑
an.

A series
∑
an converges if the sequence of partial sums converges. In this

case, we let
∑∞

n=0 an denote the limit of the series.
We say a series

∑
an converges absolutely if the associated series

∑
|an|

converges. If a series converges absolutely, then it converges.
One may form sums and products of series:∑

an +
∑

bn =
∑

(an + bn);∑
an

∑
bn =

∞∑
n=1

( n∑
j=1

ajbn−j

)
.

If
∑
an converges to S1 and

∑
bn converges to S2, then

∑
an +

∑
bn converges

to S1 + S2 and
∑
an

∑
bn converges to S1S2.

Fact 3. (Limit Test)
If

∑
an converges, then limn→∞ an = 0.

Reason. Set s =
∑
an. Note that an − sn − sn−1, where sn =

∑n
i=1, so that

s = lim sn. Now (sn−1) is a sequence, whose limit is also clearly s. Thus

lim an = lim(sn − sn−1) = lim sn − lim sn−1 = s− s = 0.

�

Fact 4. (Comparison Test)
Let

∑
cn be a convergent series and let

∑
dn be a divergent series.

(a) If 0 ≤ an ≤ cn for all n ∈ N, then
∑
an converges.

(b) If 0 ≤ dn ≤ bn for all n ∈ N, then
∑
bn diverges.

Fact 5. (Geometric Series Test)
Let r ≥ 0.

(a) If r < 1, then
∑
rn converges to 1

1−r .
(b) If r ≥ 1, then

∑
rn diverges.

Reason. Note that 1−xn = (1−x)(1+x+· · ·+xn−1); therefore 1−xn

1−x =
∑n−1

i=0 x
i.

If |x| < 1, then xn → 0 as n→∞; thus
∞∑

i=0

xn = lim
n→∞

n−1∑
i=0

xi

= lim
n→∞

1− xn

1− x

=
1

1− x
.

�
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Fact 6. (Alternating Series Test)
Let (an) be a decreasing sequence of nonnegative real numbers which converges
to zero. Then

∑
(−1)nan converges.

Reason. Note that 0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ a1. Thus (s2n) is a bounded
monotone sequence, and so it converges, say to s. Then lim s2n+1 = lim s2n +
lim a2n+1 = s+ 0 = s. �

Fact 7. (Ratio Test)
Let (an) be a sequence of positive real numbers such that

lim
n→∞

an+1

an
= L.

Then
∑
an converges if L < 1 and

∑
an diverges if L > 1.

Reason. Suppose 0 < L < 1. Select r such that 0 < L < r < 1. Let N be so
large that ∣∣∣∣an+1

an

∣∣∣∣ < r for n ≥ N.

Then |an+1| < r|an|, for n ≥ N .
In particular, |aN+1| < r|aN |, |aN+2| < r|aN+1| < r2|aN |, and in general,

|aN+k| < rk|aN |. Now
∞∑

k=1

|an| <
∞∑

k=1

|aN |rk,

which converges. �

Fact 8. (Root Test)
Let (an) be a sequence of positive real numbers such that

lim
n→∞

√
nan = L.

Then
∑
an converges if L < 1 and

∑
an diverges if L > 1.
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3. Power Series

A power series centered at x0 ∈ A, where A ⊂ R, is a function

f : A→ R
which can be expressed in the form

f(x) =
∞∑

i=0

an(x− x0)n.

Here, A is the set of points x ∈ A where f(x) converges. First we want to under-
stand the set A. If we say R ∈ [0,∞], we mean that R is either a nonnegative
real number or R = ∞.

Fact 9. Let f(x) =
∑
an(x−x0)n be a power series. Then there exists a number

R ∈ [0,∞] such that
(a) f(x) converges absolutely if |x− x0| < R;
(b) f(x) diverges if |x− x0| > R.

This number R is called the radius of convergence of f .

We may compute the radius of convergence using our knowledge of series;
in particular, the ratio test is useful. Suppose that

lim
n→∞

|an+1|
|an|

= L.

Let r = x− x0. Then

lim
n→∞

|an+1(x− x0)n+1|
|an(x− x0)n|

= lim
n→∞

|an+1r

an
| = rL.

Now f(x) =
∑
an(x − x0)n converges at the point x if rL < 1, which happens

if r < 1
L . On the other hand, if r > 1

L , then f(x) diverges. Thus the radius of
convergence is R = 1

L , i.e.,

R = lim
n→∞

|an|
|an+1|

.

Similarly, we can use the root test to derive the formula

R = lim
n→∞

1
n
√
an
.

Let f(x) =
∑
an(x − x0)n be a power series and let R be its radius of

convergence. The interval of convergence of f(x) the open interval I = (x0 −
R, x0 +R); if R = ∞, we take this to mean I = R.
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4. Power Series Algebra

We have defined power series as functions, and they behave very much like
polynomial functions in a couple of ways.

Two functions are equal if and only if they have the same domain and range
and take on the same value at every point in the domain. The following gives
a useful condition for two power series to be equal; this condition is directly
analogous to the condition for polynomial functions.

Fact 10. Let f(x) =
∑∞

n=0 an(x − x0)n and g(x) =
∑∞

n=0 bn(x − x0)n be two
power series centered at x0. Then f = g as functions if and only if an = bn for
every n ∈ N.

The sum and product of functions is defined pointwise: (f + g)(x) = f(x) +
g(x), and (fg)(x) = f(x)g(x). In the polynomial case, these can be obtained by
distribution and reassociation. This remains true for power series.

Fact 11. Let f(x) =
∑∞

n=0 an(x − x0)n and g(x) =
∑∞

n=0 bn(x − x0)n be two
power series centered at x0. Then f + g and fg are power series given by

(f + g)(x) =
∞∑

n=0

(an + bn)(x− x0)n

and

(fg)(x) =
∞∑

n=0

[ n∑
i=0

aibn−i

]
(x− x0)n.

5. Shifting the Index of a Power Series

Let k ∈ Z and consider the infinite sum
∞∑

n=k

an(x− x0)n.

If k < 0, then this is not a power series. However, if k > 0, we consider this to
be the power series by understanding that ai = 0 for i = 0, . . . , k − 1.

It is sometimes convenient to shift the index of a power series. The following
is a formula for doing so:

∞∑
n=k

an(x− x0)n =
∞∑

n=0

an−k(x− x0)n−k.
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6. Differentiation of Power Series

It seems reasonable one may pass the differentiation operator inside the
infinite sum:

d

dx

∞∑
n=0

an(x− x0)n =
∞∑

n=0

d

dx
(an(x− x0)n)

=
∞∑

n=0

nan(x− x0)n−1.

This is indeed the case.

Fact 12. Let f(x) =
∑
an(x− x0)n be a power series. Then f is differentiable

in its radius of convergence, and

f ′(x) =
∞∑

n=1

nan(x− x0)n−1.

Let f(x) =
∑
an(x − x0)n be a power series. We know attempt to find a

formula which relates the derivatives of f to the coefficients an.
Note that for any power series, if we evaluate it at its center, we pick out

the first coefficient because all of the other terms vanish at the center. By
successively differentiating the power series, we shift the coefficients to the left.
At each stage we write the first few terms to see how this goes.

Start with

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + . . . ;

thus f(x0) = a0, since all of the other terms in the series are of the form an(x−
x0)n and so they vanish at x0.

Now f ′(x) is the power series

f ′(x) = a1 +
a2

2
(x− x0) +

a3

3
(x− x0)2 +

a4

4
(x− x0)3 + . . . ;

by plugging in x0, we pick off the constant coefficient; this time, we get f ′(x0) =
a1.

Differentiating again shifts the coefficients to the left to get

f ′′(x) =
a2

2
+

a3

2 · 3
(x− x0) +

a4

3 · 4
(x− x0)2 +

a5

4 · 5
(x− x0)3 + . . . ;

thus f ′′(x0) = a2
2 .

One more time gives

f ′′′(x) =
a3

2 · 3
+

a4

2 · 3 · 4
(x− x0) +

a5

3 · 4 · 5
(x− x0)2 +

a6

4 · 5 · 6
(x− x0)3 + . . . ;

thus f ′′′(x) = a3
6 .

We now see the pattern; by the nth differentiation, the nth coefficient has
moved into the constant coefficient position, but has been divided by n! along
the way. This gives us our main formula regarding power series.

Fact 13. Let f(x) =
∑
an(x − x0)n be a power series with positive radius of

convergence. Then

an =
f (n)(x0)

n!
.
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7. Taylor Series and Analytic Functions

Let I ⊂ R be an open interval and let g : I → R be a smooth function on I.
Let x0 ∈ I.

The Taylor series of f expanded around x0 There is a natural power series
associated to the function g and the point x0, called the Taylor series of f
expanded around x0, and defined by

f(x) =
∑

an(x− x0)n,

where

an =
f (n)(x0)

n!
.

Note that if g is already a power series, it is equal to the associated power
series around any point x0 ∈ I.

We say that g is analytic at x0 if there exists a sequence (an) of real numbers
and a real number R > 0 such that for every x ∈ I ∩ (x0−R, x0 +R), the power
series

f(x) =
∑

an(x− x0)n

converges, and f(x) = g(x). We say that g is analytic if it is analytic at every
point in I.

We see that g is analytic when it is equal to its Taylor series expansion
around any point, and that the constant R above can be taken to be the radius
of convergence of the Taylor series.

Fact 14. Let f : I → R be analytic at x0 ∈ I with radius of convergence R. Let
x1 ∈ I ∩ (x0 −R, x0 +R). Then f is analytic at x1, with radius of convergence
greater than or equal to min{x1 − x0 +R, x0 +R− x1}.

Let f : I → R and g : I → R be analytic, and let c ∈ R be a constant. Then
f + g : I → R, cf : I → R, and fg : I → R are also analytic. Quotients of
analytic functions are analytic in their domain of definition (with one caveat we
will see later). If f and g are expanded around the same point x0 ∈ I, the radius
of convergence of these derived functions is at least as large as the minimum
radius of convergence between f and g.

Let A(I) = {f : I → R | f is analytic }. Then A(I) is a vector space over
R.

Let f(x) =
∑
an(x − x0)n be analytic. We say that f(x) is entire if the

radius of convergence of f around x0 is infinite. When this is the case, the
radius of convergence of f expanded around any real number is still infinite.

The following functions are entire: constants, polynomials, exp, sin, and cos.
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8. Standard Examples

Example 15. Find the Taylor expansion for f(x) = exp(x) around 0 and its
radius of convergence.

Solution. All derivatives of f are the same. Thus the coefficients are simply

an =
fn(0)
n!

=
exp(0)
n!

=
1
n!
.

Thus

f(x) =
∞∑

n=0

xn

n!
.

The radius of convergence is

R = lim
n→∞

1/n!
1/(n+ 1)!

= lim
n→∞

n+ 1 = ∞.

Thus exp is entire. �

Example 16. The Taylor expansion of sin(x) around 0 is given by

sin(x) =
∞∑

n=1

(−1)n+1 x2n−1

(2n− 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . . .

Thus sin is entire by the alternating series test.

Example 17. The Taylor expansion of cos(x) around 0 is given by

cos(x) =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . . .

Thus cos is entire by the alternating series test.

Example 18. Find the Taylor expansion for f(x) = tanx around 0 and its
radius of convergence.

Solution. First we take derivatives:

f ′(x) = sec2 x; f ′′(x) = 2 sec2 x tanx; f ′′′(x) = 4 sec2 x tan2 x+ sec4 x.

Now we evaluate at 0:

f(0) = 0; f ′(0) = 1; f ′′(0) = 0; f ′′′(0) = 1.

�

Example 19. The Taylor expansion of log(1 + x) around 0 is given by

log(1 + x) =
∞∑

n=1

(−1)n−1x
n

n
.

Its radius of convergence is 1.
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Example 20. Compute the Taylor expansion of f(x) = 1
1+x around x0 = 0 and

find its radius of convergence.

Solution. First, we differentiate until we begin to see a pattern. Then we plug
in 0.

f(x) =
1

1 + x
f(0) = 1 = 0!

f ′(x) =
−1

(1 + x)2
f ′(0) = −1 = −1!

f ′′(x) =
2

(1 + x)3
f ′′(0) = 2 = 2!

f ′′′(x) =
−6

(1 + x)4
f ′′′(0) = −6 = −3!

f iv(x) =
24

(1 + x)5
f iv(0) = 24 = 4!

We see that f (n)(0) = (−1)nn!. Then an = (−1)n, and

f(x) =
∞∑

n=0

(−1)nxn.

There is an easier way to do this by using the geometric series. Let r = −x;
then

f(x) =
1

1− r
=

∞∑
n=0

rn =
∞∑

n=0

(−1)nxn.

The radius of convergence is 1. �

We see that, in this example, the radius of convergence centered at x0 is the
distance from x0 to the nearest point of discontinuity.

Example 21. Compute the Taylor expansion of g(x) = 1
1+x2 around x0 = 0

and find its radius of convergence.

Solution. Note that g(x) = f(x2), where f(x) = 1
1+x . Then

g(x) =
∞∑

n=0

(−1)nx2n.

This is a power series with the coefficients of the odd terms all equal to zero. Its
radius of convergence is still equal to 1. �

In this example, the function g(x) is continuous and analytic at every point
x ∈ R. Then why does it have a finite radius of convergence? We answer this
after one more example.
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Example 22. Compute the Taylor expansion of f(x) = arctan(x) around x0 = 0
and find its radius of convergence.

Solution. Let f(x) = arctan(x). Then f ′(x) = 1
1+x2 ; view this as a geometric

series. This produces

f ′(x) =
1

1 + x2

=
1

1− (−x2)

=
∞∑

n=0

(−x2)n

=
∞∑

n=0

(−1)nx2n

= 1− x2 + x4 − x6 + x8 + · · · .
Now

f(x) =
∫

1
1 + x2

dx

=
∫ ( ∞∑

n=0

(−1)nx2n

)
dx

=
∞∑

n=0

(−1)n

∫
x2n dx

=
∞∑

n=1

(−1)n x
2n+1

2n+ 1

= x− x3

3
+
x5

5
− x7

7
+ · · · .

�
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9. Binomial Theorem

Power series are a generalization of polynomials. The extent to which this
is true is illuminated by the generalized binomial theorem, discovered by Isaac
Newton in the seventeenth century.

Let n ∈ N, and define
(
n
i

)
to be the number of possible ways to choose a set

of i things from a set of n things. We see that there are n choices for the first
thing, n− 1 choices for the second, and so forth, until finally there are n− i+ 1
choices for the ith thing. Thus there are n(n− 1) · · · (n− i) = n!

(n−i)! possibilities
for choosing i things, in a certain order. There are i! possible different orders
for the same set of i things, so altogether we have(

n

i

)
=

n!
i!(n− i)!

.

These numbers are exactly those which are produces via Pascal’s Triangle, and
are called the binomial coefficients. This name comes from the binomial theorem
for positive integers, which we state as

(x+ 1)n =
n∑

i=0

(
n

i

)
xi.

This may be thought of as follows: multiplying x+ 1 by itself n times using
distribution involves 2n multiplications of n things, either x or 1 from each of
the n copies of the (x+ 1)’s that are being multiplied. Each such multiplication
involves choosing either x or 1 from each binomial (x+1). There are

(
n
i

)
different

ways of selecting i x’s and (n− i) 1’s. When we collect like terms, the coefficient
of xi is the number of xi’s occurring in the sum; this is

(
n
i

)
.

Suppose that i > n; there are zero ways of choosing a set of i items from of
a set of n items, so the natural definition in this case is

(
n
i

)
= 0. In this case, we

may write (x+ 1)n as a power series:

(x+ 1)n =
∞∑

i=0

(
n

i

)
xi,

because
(
n
i

)
= 0 for i > n.

Newton saw this, and generalized it in the following fashion, which we explain
in modern notation.

Let α ∈ R, and consider the function f(x) = (x+ 1)α, so that

f(x) = (x+ 1)α,

f ′(x) = α(x+ 1)α−1,

f ′′(x) = α(α− 1)(x+ 1)α−2,

f ′′′(x) = α(α− 1)(α− 2)(x+ 1)α−3,

and so forth. Generalizing the binomial coefficients, for i ∈ N define(
α

i

)
=

∏i−1
j=0(α− j)

i!
.
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Here we use the convention that the empty product is 1, so
(
α
0

)
= 1. Then we

see that

f (i)(x) = i!
(

α

i− 1

)
(x+ 1)α−i.

Evaluating this at x0 = 0, we have

f (i)(0) = i!
(

α

i− 1

)
.

Thus the ith coefficient of the Taylor expansion of f around x0 = 0 is

ai =
f (i)(0)
i!

=
(
α

i

)
,

so the Taylor series of f(x) is

f(x) =
∞∑

i=0

(
α

i

)
xi;

this is known as the binomial series. The radius of convergence of the binomial
series is

R = lim
i→∞

∣∣∣∣ α(α− 1) · · · (α− i+ 1)/i!
α(α− 1) · · · (α− i)/(i+ 1)!

∣∣∣∣ = lim
i→∞

∣∣∣∣ i+ 1
α− i

∣∣∣∣ = lim
i→∞

∣∣∣∣ 1 + 1
i

1− α
i

∣∣∣∣ = 1.

For example, let f(x) =
√

1− x = (1− x)
1
2 . Then

√
1− x =

∞∑
i=0

(
1/2
i

)
(−x)i

= 1 +
1
2
(−x) +

(
1
2

)(
− 1

2

)
(−x)2

2!
+

(
1
2

)(
− 1

2

)(
− 3

2

)
(−x)3

3!

+
(

1
2

)(
− 1

2

)(
− 3

2

)(
− 5

2

)
(−x)4

4!

+
(

1
2

)(
− 1

2

)(
− 3

2

)(
− 5

2

)(
− 7

2

)
(−x)5

5!
+ · · ·

= 1− 1
2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5 + · · ·

Newton used this to estimate
√

3, using that
√

3 =
√

4− 1 = 2

√
1− 1

4
.

Letting x = 1
4 , we have

√
3 ≈ 2

(
1− 1

2
· 1
4
− 1

8
· 1
16
− 1

16
· 1
64
− 5

128
· 1
256

− 7
256

· 1
1024

)
= 2− 1

4
− 1

64
− 1

512
− 5

16384
− 7

131072
≈ 1.732063293.

Let s = 1.732063293; to nine decimal places, the actual value is
√

3 ≈
1.732050808. To get more accuracy, Newton could have just used a few more
terms.
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10. Newton’s Approximation for π

Consider the function f(x) =
√
x− x2. The graph of this function is the

upper half of a circle of radius one half centered at the point (1
2 , 0). Compute the

area under the curve between x = 0 and x = 1
4 in two ways; using the method

of “fluxions”, and then using geometry.

10.1. Area by Fluxions. The method of fluxions, expressed in modern
language, consists of expanding functions into their Taylor series, the differenti-
ating or integrating term by term. The area of which speak is∫ 1

4

0

f(x) dx =
∫ √

x
√

1− x dx

∣∣∣∣
1
4

≈
∫ √

x

(
1− 1

2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5

)
dx

∣∣∣∣
1
4

=
∫ (

x1/2 − 1
2
x3/2 − 1

8
x5/2 − 1

16
x7/2 − 5

128
x9/2 − 7

256
x11/2

)
dx

∣∣∣∣
1
4

=
2
3
x3/2 − 1

5
x5/2 − 1

28
x7/2 − 1

72
x9/2 − 5

704
x11/2 − 7

1664
x13/2

∣∣∣∣
1
4

=
2
3

(
1
2

)3

− 1
5

(
1
2

)5

− 1
28

(
1
2

)7

− 1
72

(
1
2

)9

− 5
704

(
1
2

)11

− 7
1664

(
1
2

)13

=
1
12
− 1

1670
− 1

3584
− 1

36864
− 5

1441792
− 7

13631488
≈ 0.076773207.

Let a = 0.076773207; this is our approximation for the area of the region being
considered.

10.2. Area by Geometry. Let O = (0, 0), A = ( 1
4 , 0), B = ( 1

2 , 0), and
C = ( 1

4 ,
√

3
4 ). Then C is on the semicircle y =

√
x− x2. The sector OBC is

one sixth of this circle if radius 1
2 , so its area is π

24 . The triangle ABC has area
1
2 ·

1
2 ·

√
3

4 ; thus the area of the sector is π
24 −

√
3

32 . This is approximately equal to
a, so

π ≈ 24(a+
√

3
32

) ≈ 24(a+
s

32
),

where s = 1.732063293 is the approximation for
√

3 we obtained in the last
section. Thus

π ≈ 3.141604438.
Newton actually carried this approximation out using nine terms of the binomial
expansion, and obtained an estimate for π which was accurate to the seventh
decimal place.
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11. Analytic Functions and Complex Numbers

Why do some functions have a finite radius of convergence? For example,
we know that tanx is not defined wherever cosx = 0, for example at x = pi

2 ,
so if we expand tanx around x0 = 0, we are bound to see that the radius of
convergence is no bigger than π

2 ; on the other hand, since sinx and cosx are
entire and cosx is nonzero in I = (−π

2 ,
π
2 ), we expect that tanx is analytic in

I so the radius of convergence of the expansion around 0 should be exactly π
2 ,

which turns out to be the case.
However, this doesn’t explain the radius of convergence of the function

f(x) = x
1+x2 , which is analytic in the interval I = (−1, 1), but when expanded

around zero has a radius of convergence of only 1. The numerator and denom-
inator are analytic and the denominator is nonvanishing for all real numbers x;
why isn’t f analytic? To understand this, we must expand our vision to the
complex plane.

Our entire theory of sequences, series, power series, and Taylor series general-
izes to use of complex numbers. A complex power series has a disk of convergence;
if

f(z) =
∑

an(z − z0)n,

where an, z0 ∈ C, then f converges in a disk around z0 of radius R, where R is
the radius of convergence as computed above (the absolute value of a complex
number is its modulus).

The answer to our question is: the radius of convergence is the distance to
the nearest nonremovable complex singularity. Let us examine what this means.

12. Laurent Series

Let I ⊂ R be an open interval. Let x0 ∈ I and let A = I r {x0}.
A (inessential) Laurent series at x0 is a function g : A→ R such that there

exists an integer k ∈ Z and real number ak, ak+1, · · · ∈ R such that

g(x) =
∞∑

n=k

ak(x− x0)k.

If k ≥ 0, a Laurent series is a power series.
Let f : I → R be analytic. We attempt to find a Laurent series for 1

f at x0.
In particular, we try to find the number of negatively indexed coefficients in the
inverse of f .

If we let an = f(n)

n! , then

f(x) =
∞∑

n=0

an(x− x0)n.

We seek a function

g(x) =
∞∑

n=k

bn(x− x0)n,

where k ≤ 0 and bk 6= 0, such that fg(x) = 1 for every x ∈ I. Let cn be the nth

term in the product; the lowest possible value for n is k. Then cn =
∑

i−j=0 aibj ;
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when we multiply these series, we should get

ck = a0bk

ck+1 = a0bk+1 + a1bk

ck+2 = a0bk+2 + a1bk+1 + a2bk+3

...
c−1 = a0b−1 + · · ·+ ak−1bk

c0 = a0b0 + · · ·+ akbk

c1 = a0b1 + · · ·+ ak+1bk

We want c0 = 1 and all other cn = 0. Then we better have a0 = 0 (consider ck),
whence a1 = 0 (considering ck+1), and so forth up to ak−1. The first an which
is not equal to zero is at n = k.

13. Singularities

Let I ⊂ R be an open interval. Let x0 ∈ I and let A = I r {x0}. Let
g : A→ R be analytic on A.

We say that g is meromorphic at x0 if we may write g as an inessential
Laurent series centered at x0. We say that x0 is a singularity of g.

Let g : I → R be meromorphic at x0. We say that the singularity at x0 is
removable if limx→x0 g(x) exists; in this case, we may define

f(x) =

{
g(x) if x 6= x0;
limx→x0 f(x) if x = x0.

Then f(x) is analytic at x0; we think of f and g as interchangeable, and can
write f as a power series around x0.

We say that g has a zero of order n at x0 if n is smallest integer such that
the nth coefficient of the Laurent expansion of f is nonzero. Equivalently, this
is the maximum positive integer n such that g(x)

xn has a removable singularity at
x0.

We say that g has a pole of order n at x0 if n is the minimum number of
negatively indexed terms in the Laurent expansion of g. Equivalently, this is the
maximum positive integer n such that (x−x0)ng(x) has a removable singularity
at x0.

Note that g has a pole of order n at x0 if and only if g has a zero of order
−n at x0.

If f has a zero of order n at x0 and g has a pole of order n at x0, then fg
has a removable singularity at x0, and fg(x0) 6= 0; equivalently, fg has a zero of
order 0 at x0.





CHAPTER XIII

Complex Numbers

Historical Background

Reference:
http://math.fullerton.edu/mathews/n2003/ComplexNumberOrigin.html.

Rafael Bombelli (Italian 1526 - 1572)
Recall that Cardano, in attempting to solve the cube equals cosa plus number
case x3 = mx+n, arrived at a negative sign under the radical. Tartaglia rebuked
him, claiming that his methods were ”totally false”. Cardano, in attempting to
go forward with this, eventually claimed that such considerations were ”as subtle
as they are useless”.

However, in his 1572 treatise L’Algebra, Rafael Bombelli showed that roots
of negative numbers have great utility indeed. Consider the depressed cubic
x3 = 15x+ 4. Applying the method of Tartaglia and Cardano, we set m = −15
and n = 4. If x = t − u, then 3tu = m = −15 and t3 − u3 = n = 4, so
that u3 = − 125

t3 , and t3 + 125
t3 = 4. Then t6 − 4t3 − 125 = 0, and by the

quadratic formula, t3 = 2 +
√
−121 = 2 + 11

√
−1, whence u3 = −2 + 11

√
−1,

and x = 3
√

2 + 11
√
−1− 3

√
−2 + 11

√
−1.

Now Bombelli, undeterred by the negative sign under the radical, wished to
find a number whose cube was 2+11

√
−1. Having a ”wild thought”, he assumed

that such a number would be of the form a+ b
√
−1. This produces

(a+ b
√
−1)3 = (a3 − 3ab2) + (3a2b− b3)

√
−1 = 2 + 11

√
−1,

from which we conclude that a3 − 3ab2 = 2 and 3a2b − b3 = 11. The first
equation gives a(a2 − 3b2) = 2. Further assuming that a and b may be integers,
and realizing that the only factors of 2 are 1 and 2, Bombelli discovered that
a = 2 and b = 1 solved the first equation. Since they also solve the second, he
found that (2 +

√
−1)3 = 2 + 11

√
−1. Thus x = (2 +

√
−1)− (−2 +

√
−1) = 4.

By considering
√
−1 as an acceptable quantity, Bombelli found a real solution

to the cubic equation. This legitimized complex numbers as a legitimate area of
study.

John Wallis (English 1619 - 1703)
Attempts to view complex solutions to quadratic equations as points on a plane.

Abraham de Moivre (French 1667 - 1754)
Used complex numbers in his formula

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Leonhard Euler (Swiss 1707 - 1783)
Understood DeMoivre’s formula as giving solutions to the equation xn − 1 = 0,
viewed as vertices on a regular polygon.

97



98 XIII. COMPLEX NUMBERS

Carl Friedrich Gauss (German 1777 - 1855)
Completed the geometric interpretation of the complex number x+yi as the point
(x, y) on the complex plane. Proved the Fundamental Theorem of Algebra.

Augustin-Louis Cauchy (French 1789 - 1857)
Formalized complex analysis and discovered many of its fascinating theorems.

1. Complex Algebra

Define addition and multiplication on the set R2 by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and
(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

Let C denote the set R2 together with this addition and multiplication; we call
C the set of complex numbers.

Let f : R → C be given by f(x) = (x, 0). This embeds the real line into C,
in a manner which preserves addition and multiplication; we call the image the
real axis, and identify R with its image.

Let i = (0, 1). Then i2 = i · i = (−1, 0) = −1. We call {(0, y) | y ∈ R} the
imaginary axis.

Every element of C can be written as x+ iy in a unique way, where x, y ∈ R;
that is,

C = {x+ iy | x, y ∈ R, i2 = −1}.
One can show that these operations have the following properties:

(F1) a+ b = b+ a for every a, b ∈ C;
(F2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ C;
(F3) there exists 0 ∈ C such that a+ 0 = a for every a ∈ C;
(F4) for every a ∈ C there exists b ∈ C such that a+ b = 0;
(F5) ab = ba for every a, b ∈ C;
(F6) (ab)c = a(bc) for every a, b, c ∈ C;
(F7) there exists 1 ∈ C such that a · 1 = a for every a ∈ C;
(F8) for every a ∈ C r {0} there exists c ∈ C such that ac = 1;
(F9) a(b+ c) = ab+ ac for every a, b, c ∈ C.

Together, these properties state that C is a field. Note that
• 0 = 0 + i0;
• 1 = 1 + i0;
• −(x+ iy) = −x+ i(−y) = −x− iy;
• (x+ iy)−1 = x−iy

x2+y2 .
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2. Complex Geometry

Let z = x + iy be an arbitrary complex number. The real part of z is
<(z) = x. The imaginary part of z is =(z) = y. We view R as the subset of C
consisting of those elements whose imaginary part is zero.

We graph complex number on the xy-plane, using the real part as the first
coordinate and the imaginary part as the second coordinate. Under this inter-
pretation, the set C becomes a real vector space of dimension two, with scalar
multiplication given by complex multiplication by a real number. We call this
vector space the complex plane.

Thus the geometric interpretation of complex addition is vector addition.
Let z = x + iy be an arbitrary complex number. The conjugate of z is

z = x − iy. This is the mirror image of z under reflection across the real axis.
The modulus of z is |z| =

√
x2 + y2. This is the length of z as a vector. Note

that zz = |z|2. The angle of z, denoted by ∠(z), is the angle between the vectors
(1, 0) and (x, y) in the real plane R2; this is well-defined up to a multiple of 2π.

Let r = |z| and θ = ∠(z). Then x = r cos θ and y = r sin θ. Define a function

cis : R → C by cis(θ) = cos θ + i sin θ.

Then z = rcis(θ); this is the polar representation of z.
Recall the trigonometric formulae for the cosine and sine of the sum of angles:

cos(A+B) = cosA cosB − sinA sinB

and
sin(A+B) = cosA sinB + sinA cosB.

Let z1 = r1cis(θ1) and z2 = r2cis(θ2). Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2cis(θ1 + θ2).

Thus the geometric interpretation of complex multiplication is:
(a) The radius of the product is the product of the radii;
(b) The angle of the product is the sum of the angles.
In particular, if |z| = 1, then z = cis(θ) for some θ, and zn = cis(nθ).

Restate this as

Theorem 1 (DeMoivre’s Theorem). cisn(θ) = cos(nθ) + i sin(nθ).

Example 2. Let f : C → C be given by f(z) = 2z. Then f dilates the complex
plane by a factor of 2.

Example 3. Let f : C → C be given by f(z) = iz. Then f rotates the complex
plane by 90 degrees.

Example 4. Let f : C → C be given by f(z) = (1 + i)z. Note that |1 + i| =
√

2
and ∠(1 + i) = π

4 . Then f dilates the complex plane by a factors of
√

2 and
rotates it by 45 degrees.
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3. Complex Powers and Roots

Let z = rcis(θ) and let n ∈ N. Then zn = rncis(nθ).
The unit circle in the complex plane is

U = {z ∈ C | |z| = 1}.
Note that if u1, u2 ∈ U, then u1u2 ∈ U.

Let ζ ∈ C and suppose that ζn = 1. We call ζ an nth root of unity. If ζm 6= 1
for m ∈ {1, . . . , n− 1}, we call ζ a primitive nth root of unity.

Let ζ = cis( 2π
n ). Then ζn = cis(n 2π

n ) = cis(2π) = 1; one sees that ζ is a
primitive nth root of unity. Thus primitive roots of unity exist for every n. As m
ranges from 0 to n− 1, we obtain distinct complex numbers ζm, all of which are
nth roots of unity. These are all of the nth roots of unity; thus for each n ∈ N,
there are exactly n distinct nth roots of unity.

If one graphs the nth roots of unity in the complex plane, the points lie
on the unit circle and they are the vertices of a regular n-gon, with one vertex
always at the point 1 = 1 + i0.

Let z = rcis(θ). Then z has exactly n distinct nth roots; they are

n
√
z = n

√
rζm

n cis(
θ

n
), where m ∈ {0, . . . , n− 1}.

The Fundamental Theorem of Algebra states that every polynomial with
complex coefficients has a root in the complex numbers.
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4. Complex Analysis

Let f : C → C. We say that f is continuous at z0 if for every ε > 0 there
exists δ > 0 such that |z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

We say that f is differentiable at z0 if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

exists.
Complex differentiability has some amazing consequences; for example, it

can be shown that every complex differentiable function is analytic.
We use the Taylor series expansion for several real transcendental functions

in order to define their complex counterparts.
Define the complex exponential function

exp : C → C by exp(z) =
∞∑

n=0

zn

n!
.

Define the complex sine function by

sin : C → C by sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+ . . .

Define the complex cosine function by

cos : C → C by cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+ . . .

Note that exp, sin, and cos, when restricted to R ⊂ C, are defined so as to
be consistent with other definitions of these real functions.

Define log : C → C to be an inverse function of exp. Let w, z ∈ C. We define
wz by

wz = exp(z log(w)).

Thus exp(z) = ez.
Euler evaluated exp(iz), separating the real and imaginary parts, and found

exp(iz) =
∞∑

n=0

(iz)n

n!

= 1 + iz + i2
z2

2!
+ i3

z3

3!
+ i4

z4

4!
+ i5

z5

5!
+ i6

z6

6!
+ i7

z7

7!
+ . . .

= (1− z2

2!
+
z4

4!
− z6

6!
+ . . . ) + i(z − z3

3!
+
z5

5!
− z7

7!
+ . . . )

= cos z + i sin z.

In particular, if z = θ ∈ R, we have

Theorem 5 (Euler’s Theorem). Let θ ∈ R. Then

eiθ = cis(θ).

Letting θ = π, we get the beautiful

eiπ + 1 = 0,

a formula that relates the four most important constants in mathematics.



102 XIII. COMPLEX NUMBERS

5. Sum of Square Reciprocals

5.1. Historical Background. Recall the triangular numbers

n∑
i=1

i =
n(n+ 1)

2
.

Leibnitz was challenged by Huygens to find the sum of their reciprocals. First
factor out a 2 from all the terms 2

n(n+1) ; then compute

∞∑
n=1

1
n(n+ 1)

=
∞∑

n=1

[
n+ 1

n(n+ 1)
− n

n(n+ 1)

]

=
∞∑

n=1

[
1
n
− 1
n+ 1

]
= (1− 1

2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + (

1
4
− 1

5
) + . . .

= 1− (
1
2
− 1

2
)− (

1
3
− 1

3
)− (

1
4
− 1

4
)− . . .

= 1.

Thus the sum of the reciprocals of the triangular numbers is 2.
Jacob Bernoulli, who knew that the harmonic series

∑
1
n diverges, then

realized that
∞∑

n=1

1
n2

< 1 +
∞∑

n=1

1
n(n+ 1)

= 2.

Euler was able to compute the value to which the sum of the reciprocals of the
square natural numbers converges.

5.2. Polynomials with Specified Roots. Let a1, . . . , an ∈ C. We wish
to construct a canonical polynomial with these zeros. One way is to select
the polynomial to be monic; that is, to have 1 as the leading coefficient. The
polynomial with this property is just

f(x) =
n∏

i=1

(x− ai).

In this case, we know that the coefficients of f(x) are symmetric functions of the
zeros. However, we may also choose to normalize the polynomial by selecting
the constant coefficient to be 1. For this case, set

(†) g(x) =
n∏

i=1

(1− x

ai
).

The coefficient of x in g(x) is

(∗)
n∑

i=1

−1
ai
.
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5.3. Euler’s Method. Let g(x) = sin x
x ; the power series expansion for

g(x) is arrived at by taking the Taylor series for sinx and dividing it, term by
term, by x, to obtain:

g(x) = 1− x2

3!
+
x4

5!
− x6

7!
+ . . . .

This has the appearance of a polynomial whose constant coefficient in 1, except
that it infinitely many terms. Euler, being undeterred by this last fact, assumed
that g(x) could be written as an infinite product of linear terms as in equation
(†).

Note that g(0) = 1; otherwise, the zeros of g(x) are exactly those of sinx;
they are Z = {±π,±2π,±3π, . . . }. Thus Euler arrives at

g(x) =
∏
z∈Z

(1− x

z
)

=
(

(1− x

π
)(1 +

x

π
)
)(

(1− x

2π
)(1 +

x

2π
)
)
· · ·

(
(1− x

nπ
)(1 +

x

nπ
)
)
· · ·

=
(

1− x2

π2

)(
1− x2

4π2

)
· · ·

(
1− x2

n2π2

)
· · ·

=
∞∏

n=1

(
1− x2

n2π2

)
.

Multiplying out this infinite product, Euler finds the coefficient of the x2 term,
and equates it to the coefficient of the x2 term of the power series expansion of
g(x), as in equation (∗), to get

− 1
3!

=
∞∑

n=1

−1
n2π2

.

Multiply both sides by −π2 to arrive at the mysterious result
∞∑

n=1

1
n2

=
π2

6
.





CHAPTER XIV

Fields

1. Fields

Definition 1. A field is a set F together with operations

+ : F × F → F and · : F × F → F

satisfying

(F1) a+ b = b+ a for every a, b ∈ F ;
(F2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ F ;
(F3) there exists 0F ∈ F such that a+ 0F = a for every a ∈ F ;
(F4) for every a ∈ F there exists b ∈ F such that a+ b = 0F ;
(F5) ab = ba for every a, b ∈ F ;
(F6) (ab)c = a(bc) for every a, b, c ∈ F ;
(F7) there exists 1F ∈ F such that a · 1F = a for every a ∈ F ;
(F8) for every a ∈ F r {0F } there exists c ∈ F such that ac = 1F ;
(F9) a(b+ c) = ab+ ac for every a, b, c ∈ F ;

Definition 2. Let F be a field. A subfield of F is a subset S ⊂ F such that
(S0) 1 ∈ S;
(S1) a, b ∈ S ⇒ a+ b ∈ S;
(S2) a ∈ S ⇒ −a ∈ S;
(S3) a, b ∈ S ⇒ ab ∈ S;
(S4) a ∈ S ⇒ a−1 ∈ S.

If S is a subfield of F , we write S ≤ F .

Remark 3. Properties (S0) through (S4) imply that a subfield of F is a subset
of F which is itself a field.

Problem 1. Let F be a field and S be a collection of subfields of F .
Show that ∩S ≤ F .

Definition 4. Let A ⊂ F . The subfield of F generated by Ais the intersection
of all subfields of F which contain A.

If S is a subfield of F and A ⊂ F . let S(A) denote the subfield of F generated
by S ∪A. If A = {α1, . . . , αn} is finite, let S(α1, . . . , αn) = S(A). In particular,
if a ∈ F , let S(a) = S({a}).

Remark 5. Every subfield of C contains Q, so every subfield generated by a
subset of C contains Q.

Example 6. Let α =
√

2. Then

Q(α) = {a+ bα | a, b ∈ Q}.

105
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2. Polynomials

Definition 7. Let F be a field. A polynomial over F is a function f : F → F
of the form

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n,

where n is a nonnegative integer and ai ∈ F for i = 1, . . . , n, with an 6= 0 (unless
f(X) = 0). We call the variable X an indeterminate.

The number n is called the degree of f , and is denoted by deg(f), The
elements ai are called the coefficients of f .

The number an is called the leading coefficient. We say that f is monic if
an = 1.

The element a0 is called the constant coefficient. The polynomials of degree
zero are called constants, and are identified with the elements of the field F . By
convention, deg(0) = −∞.

The set F [X] is closed under addition, subtraction, and multiplication.

Proposition 8 (Division Algorithm for Polynomials). Let F be a field and let
f, g ∈ F [X]. Then there exist polynomials q, r ∈ F[X] such that

g = qf + r such that deg(r) < deg(f).

If f and g are monic, then q and r may be chosen to be monic or zero.

Proof. Without loss of generality, assume that f and g are monic. Let

S = {h ∈ F [X] | h = g − qf for some monic q ∈ F [X]}.
Clearly S is nonempty; let r ∈ S be a polynomial of minimal degree in S, so
that r = g − qf for some monic q ∈ F [X]. Then g = qf + r.

We claim that deg(r) < deg(f), To see this, let k = deg(r) − deg(f), and
assume that k ≥ 0. Then Xk ∈ F [X], and h = r −Xkf = g − (q −Xk)f ∈ S is
a monic polynomial of degree less than that of r, contradicting the selection of
r. �

Definition 9. Let F be a field and let f, g ∈ F [X] We say that g is divisible by
f , or that f is a factor of g, or that f divides g, and write f | g, if there exists
k ∈ F [X] such that g = fk. We see that f divides g if and only if the remainder
upon division of g by f is r = 0.

Definition 10. Let F be a field, f ∈ F [X], and α ∈ F . If α ∈ F , we say that
α is a zero of f if f(α) = 0. In this case, we say that f annihilates α.

Proposition 11 (Remainder Theorem). Let F be a field, f ∈ F [X], and α ∈ F .
Let h(X) = (X − α) ∈ F [X]. Write f = hq + r, where deg(r) < deg(h). Then
r ∈ F , and f(α) = r.

Proposition 12 (Factor Theorem). Let F be a field, f ∈ F [X], and α ∈ F . Let
h(X) = (X − α) ∈ F [X]. Then h | f if and only if f(α) = 0.

Proposition 13. Let F be a field and let α ∈ F . Suppose that g = fq for some
f, g, q ∈ F [X], and that g(α) = 0. Then either f(α) = 0 or q(α) = 0.
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Definition 14. Let f, g ∈ F [X]. A greatest common divisor of m and n,
denoted gcd(m,n), is a monic d ∈ F [X] such that

(a) d | f and d | g;
(b) If e | f and e | g, then e | d.

Proposition 15 (Euclidean Algorithm for Polynomials). Let f, g ∈ F [X]. Then
there exists d ∈ F [X] such that d = gcd(m,n), and there exist s, t ∈ F [X] such
that

d = sf + tg.

If f and g are monic, we may choose s and t to be monic.

Proof. Without loss of generality, assume that f and g are monic. Let

S = {h ∈ F [X] | h = sf + tg for some monic s, t ∈ F [X]}.
Clearly S is nonempty; select d ∈ S of minimal degree, so that d = sf + tg for
some monic s, t ∈ F [X].

Now f = qd + r for some monic q, r ∈ F [X] with deg(r) < deg(d). Then
f = q(sf + tg) + r, so r = (1− qs)f + (qt)g ∈ S. If r is nonzero, this contradicts
the selection of d; thus r = 0, which shows that d | f . Similarly, d | g.

If e | f and e | g, then f = ke and g = le for some k, l ∈ F [X]. Then
d = ske+ tle = (sk + tl)e. Therefore e | d. This shows that d = gcd(m,n). �

Definition 16. Let F be a field and let f ∈ F [X]. We say that f is irreducible
over F if whenever f = gh for some g, h ∈ F [X], either deg(g) = 1 or deg(h) = 1.

Example 17. If deg(f) ∈ {2, 3}, then f is irreducible over F if and only if f
has no zero in F .

3. Field Extensions

Definition 18. A field extension E/F consists of a field E which contains a
field F .

Definition 19. Let E/F be a field extension, and let α ∈ E. We say that
α is algebraic over F if there exists a nonzero polynomial f ∈ F [X] such that
f(α) = 0. Otherwise, we say that α is transcendental over F .

Proposition 20. Let E/F be a field extension and let α ∈ E be algebraic over
F . Then there exists a unique monic irreducible polynomial f ∈ F [X] such that
f(α) = 0.

Proof. Since α is algebraic over F , there exists some polynomial in F [X] which
annihilates α. Let f ∈ F [X] be a nonzero polynomial of minimal degree which
annihilates α. Clearly f is irreducible, since it is of minimal degree. We may
divide by the leading coefficient to see that we may select f to be monic. Now
suppose that g is another monic polynomial of minimal degree which annihilates
α. We have deg(f) = deg(g). Then deg(f − g) < deg(f) = deg(g). Since f is of
minimal degree among nonzero polynomials which annihilate α, we must have
f − g = 0. Thus f = g, and f is unique. �

Definition 21. Let E/F be a field extension and let α ∈ E be algebraic over
F . The minimum polynomial of α over F , denoted minpoly(α/F ), is the unique
monic irreducible polynomial which annihilates α. The degree of α over F ,
denoted deg(α/F ), is equal to deg(minpoly(α/F )).
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Definition 22. Let E/F be a field extension and let α ∈ E. The evaluation map
on F [X] with respect to α is the function ψα : F [X] → E defined by f 7→ f(α).
The image of the evaluation map is denoted F [α]; that is,

F [α] = ψα(F [X]) =
{ k∑

i=0

aiα
i | k ∈ N, ai ∈ F

}
⊂ E.

Proposition 23. Let E/F be a field extension and let α ∈ E. If α is transcen-
dental over F if and only if ψα is injective.

Proof. Suppose that α is transcendental. Let f, g ∈ F [X] so that f(α) and g(α)
are arbitrary members of F [α]. Suppose that f(α) = g(α); then (f − g)(α) = 0,
so (f − g) is a polynomial which annihilates α. Since α is transcendental, we
must have f − g = 0, so f = g.

On the other hand, if α is not transcendental, it is algebraic; let f =
minpoly(α/F ). Then ψα(f) = ψα(0), and ψα is not injective. �

Proposition 24. Let E/F be a field extension and let α ∈ E. Let F [α] =
ψα(F [X]) denote the image of F [X] under the evaluation map. Let α is algebraic
over F and deg(α/F ) = n, then F [α] = S, where

S =
{ n−1∑

i=0

aiα
i | ai ∈ F

}
;

moreover, F [α] is a field, and F [α] = F (α).

Proof. Clearly all elements of the form
∑n−1

i=0 aiα
i are in F [α], so S ⊂ F [α].

Let f ∈ F [X] be the minimum polynomial of α over F . Let g ∈ F [X]; then
g(α) is an arbitrary member of F [α]. Now g(X) = f(X)q(X) + r(X), where
deg(r) < deg(f). By the remainder theorem, g(α) = f(α)q(α)+r(α) = r(α) ∈ S.

Since F [X] is closed under addition, subtraction, and multiplication, so is
F [α]. We only need to show that f(α) if invertible for f(α) 6= 0.

Let β ∈ F [α]. Then β = g(α) for some g ∈ F [X]; by the division algorithm,
we may select g so that deg(g) < deg(f). Since f is irreducible, we see that
gcd(f, g) = 1, so there exist s, t ∈ F [X] such that sf+tg = 1. Then t(α)g(α) = 1,
so β−1 = t(α), and β is invertible. �
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4. Vector Spaces

Definition 25. Let F be a field. A vector space over F is a set V together with
operations

+ : V × V → V and · : F × V → V

satisfying
(V1) v + w = w + v for all v, w ∈ V ;
(V2) v + (w + x) = (v + w) + x for all v, w, x ∈ V ;
(V3) there exists 0V ∈ V such that v + 0V = v for all v ∈ V ;
(V4) for every v ∈ V there exists w ∈ V such that v + w = 0V ;
(V5) 1F · v = v for every v ∈ V ;
(V6) (ab)v = a(bv) for every v ∈ V and a, b ∈ F ;
(V7) (a+ b)v = av + bv for every v ∈ V and a, b ∈ F .
(V8) a(v + w) = av + aw for every v, w ∈ V and a ∈ F ;

Problem 2. Let V be a vector space over a field F . Let a ∈ F and x ∈ V .
(a) Show that 0F · x = 0V .
(b) Show that a · 0V = 0V .
(c) Show that (−1F ) · x = −x.

Definition 26. Let V be a vector space over a field F .
A subspace of V is a subset W ⊂ V such that

(W0) 0V ∈W ;
(W1) x, y ∈W ⇒ x+ y ∈W ;
(W2) a ∈ F, x ∈W ⇒ ax ∈W .

If W is a subspace of V , this is denoted by W ≤ V .

Remark 27. Properties (W0) through (W2) imply that a subspace of V is a
subset of V which is itself a vector space.

Problem 3. Let V be a vector space over a field F and let W be a collection of
subspaces of V .
Show that ∩W ≤ V .

Definition 28. Let V be a vector space over a field F and let A ⊂ V . The
subspace of V generated by A, denoted gvV (A), the intersection of all subspaces
of V which contain A. This subspace is called the span of A.

Problem 4. Let V be a vector space over a field F and let A = {v1, . . . , vn}.
Show that

gvV (A) =
{ n∑

i=1

aivi | ai ∈ F
}
.
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5. Vector Space Dimension

Definition 29. Let V be a vector space over a field F . Let B ⊂ V .
We say that B spans V is for every x ∈ V there exist a1, . . . , an ∈ F and

v1, . . . , vn ∈ B such that x =
∑n

i=1 aivi.
We say that B is linearly independent if whenever v1, . . . , vn ∈ B are distinct

elements of B and a1, . . . , an ∈ F ,
n∑

i=1

aivi = 0 ⇒ ai = 0 for i = 1, . . . , n.

We say that B is a basis for V if B spans V and is linearly independent.

Problem 5. Let V be a vector space over a field F and let X ⊂ V span V .
Show that V = gvV (X).

Problem 6. Let V be a vector space over a field F and let X ⊂ V be linearly
independent. Let v ∈ X. Show that gvV (Xr{v}) is a proper subset of gvV (X).

Problem 7. Let V be a vector space over a field F and let X ⊂ V span V .
Show that there exists a subset B ⊂ X such that B is a basis for V .

Problem 8. Let V be a vector space over a field F and let X ⊂ V be linearly
independent. Show that there exists a subset Y ⊂ V such that X ∪ Y is a basis
for V .

Problem 9. Let V be a vector space over a field F . Let A = {v1, . . . , vm} and
B = {w1, . . . , wn} be bases for V . Show that m = n.

Definition 30. Let V be a vector space over a field F . If V has a basis containing
n elements, where n ∈ N, we say that V is finite dimensional, and that n is the
dimension of V ; this is denoted by dim(V ) = n.

Problem 10. Let V be a vector space over a field F and let U,W ≤ V . Set
U +W = {u+ w | u ∈ U,w ∈W}.
(a) Show that U +W ≤ V .
(b) Show that dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Problem 11. Let F be a field and let n be a positive integer. Let Fn denote
the cartesian product of F with itself n times. Show that Fn is a vector space
over F of dimension n.

Observation 31. Let E/F be a field extension. We may add the elements of
E, and multiply them by elements of F . In this way, we may view E as a vector
space over F .

Definition 32. Let E/F be a field extension. The degree of the extension,
denoted [E : F ], is its dimension of E as a vector space over F .
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6. Types of Extensions

Definition 33. Let E/F be a field extension.
We say that E/F is a primitive extension if E = F [α] for some α ∈ E which

is algebraic over F .
We say that E/F is a finite extension if [E : F ] <∞.
We say that E/F is a algebraic extension if every element of E is algebraic

over F .

Proposition 34. Let E/F be a primitive extension such that E = F[α], where
α is algebraic over F with minpoly(α/F ) = f ∈ F [X]. Let n = deg(f). Then
the set

B = {1, α, . . . , αn−1}
is a basis for E/F , and in particular, [E : F ] = n.

Proof. Since E = F [α], that B spans E is a direct consequence of Proposition
24. To see that B is linearly independent, let

a0 · 1 + a1α+ · · ·+ anα
n−1 = 0

be a dependence relation. Then α is a root of the polynomial
∑n−1

i=1 aiX
i. Since

this polynomial has lower degree than f , it must be the zero polynomial, so
ai = 0 for every i. This shows that B is linearly independent over F . �

Proposition 35. Let E/F be a finite extension. Then E/F is an algebraic
extension.

Proof. Let [E : F ] = n, and let α ∈ E. The set S = {1, α, α2, . . . , αn} contains
n+ 1 elements, and so it must be linearly dependent over F . Thus there exists
a nontrivial dependence relation

a0 · 1 + a1α+ · · ·+ anα
n = 0.

Let f(X) = a0 + a1X + . . . anX
n. Then f(α) = 0, so α is algebraic over F . �

Proposition 36. Let K/E and E/F be finite field extensions of dimension n
and m respectively. If {z1, . . . , zn} is a basis for K/E and {y1, . . . , ym} is a
basis for K/F , then {yizj | i = 1, . . . ,m; j = 1, . . . , n} is a basis for K/F . In
particular, K/F is finite, and

[K : F ] = [K : E][E : F ].

Proof. Let α ∈ K. Then α is in the span of {zj}, so α =
∑n

j=1 bjzj for some
bj ∈ E. Since each bj ∈ E, it is in the span of {yi}, so bj =

∑m
i=1 aijyi for some

aij ∈ F . Thus

α =
n∑

j=1

[ m∑
i=1

aijyi

]
zj =

n∑
j=1

m∑
i=1

aijyizj .

Thus {yizj} spans K.
Now consider a dependence relation

∑n
j=1

∑
i i = 1maijyizj = 0. Collect like

terms to obtain
∑n

j=1

[∑m
i=1 aijyi

]
zj = 0. Since {zj} is linearly independent,

we must have
∑n

i=1 aijyi = 0 for every j. But since {yi} is linearly independent,
this implies that aij = 0 for every i and j. Thus {yizj} is linearly independent
over F . �
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7. Field of Constructible Numbers

Definition 37. Let S ⊂ C and set z ∈ C. We say that a line L ⊂ C is
constructible from S if L ∩ S contains at least two points. We say that a circle
C ⊂ C is constructible from S if the center of C is in S and C ∩ S is nonempty.
We say a point z ∈ C is constructible from S if one of the following conditions
holds:

(C0) z ∈ S;
(C1) z ∈ L1 ∩ L2, where L1 and L2 are lines constructible from S;
(C2) z ∈ L1 ∩C1, where L1 is a line and C1 is a circle constructible from S;
(C3) z ∈ C1 ∩ C2, where C1 and C2 are circles constructible from S.

Let C(S) be the set of points which are constructible from S.
Set C0(S) = S and inductively set Cn+1(S) = C(Cn(S)). Let S = {0, 1} ∈

C, and define
K = ∪∞n=0Cn(S);

members of K are called constructible numbers.

Proposition 38. Let a, b ∈ K. Then
(K1) a+ b ∈ K;
(K2) −a ∈ K;
(K3) ab ∈ K;
(K4) a−1 ∈ K if a 6= 0;
(K5) ±

√
a ∈ K;

(K6) a ∈ K;
Thus the set K is a subfield of C which is closed under square roots and conju-
gation.

Proof. Note that a+b is the fourth point in a parallelogram with points a, 0, and
b; we have seen that this construction is possible. Also, −a is the intersection
of the line through 0 and a with the circle centered at 0 through a, so −a is
constructible.

Let a = reiθ be the polar expression of a. Now r = |a|; this may be
constructed by intersecting the real axis with the circle centered at 0 through a.

Now let a = reiθ and b = seiγ ; then ab = rsei(θ+γ). We have seen that if
we can construct lengths r and s, then we can construct the length rs. We only
need to show that we can construct the angle θ + γ. Try to do this geometri-
cally; otherwise it will follow algebraically from the similar facts for the real and
imaginary parts of a and b.

Next we describe how to construct the conjugate a of a. Form the line
perpendicular to the real axis and passing through a. Intersect this line with the
circle centered at 0 through a. One point of intersection is a, the other is a.

Consider that a−1 = 1
r e
−iθ. We have seen that we can construct 1

r , and we
can bisect any angle. Thus a−1 ∈ K. �
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Proposition 39. Let z ∈ C. Then z ∈ K if and only if <z ∈ K and =z ∈ K.
In particular, i is constructible.

Proof. Note that the real axis is immediately constructible from {0, 1}, and the
imaginary axis is constructible as the perpendicular to the real axis through 0.

Suppose that z ∈ K. Then |z| is the positive real number obtained as the
intersection of real line and the circle centered at 0 and through z. Then |z|2

is constructible since K is a field, and since zz = |z|2, we see that z = |z|2
z

is constructible. Thus <z = 1
2 (z + z) is constructible, and =z = z − <z is

constructible.
Suppose that <z and =z are constructible. Now i is the intersection of the

unit circle and the imaginary axis, so i is constructible. Thus z = <z + i=z is
constructible. �

8. Constructed Fields

Definition 40. Let z = (z1, . . . , zn) be an n-tuple of complex numbers. We say
that z is constructed if z1 = i and zi+1 ∈ C(Q[z1, . . . , zi]) for i = 1, . . . , n. If
F ≤ C, we say that F is constructed if F = C[z1, . . . , zn] for some constructed
tuple (z1, . . . , zn).

Proposition 41. Let F ≤ C and z ∈ C. Suppose i ∈ F . Then z ∈ F if and
only if <z,=z ∈ F . In this case, z ∈ F and |z|2 ∈ F .

Proof. Let z = x+ iy, where x, y ∈ R. If x, y, i ∈ F , then obviously z ∈ F .
Suppose z, i ∈ F ; then z − iz ∈ F . Now z − iz = (x− ix)− (y − iy) = (x−

y)(1−i). Since i ∈ F , 1−i ∈ F , so x−y ∈ F . Now (x−y)−z = y−iy = y(1−i),
so y ∈ F . Thus x ∈ F . Now z = x− iy ∈ F , so |z|2 = zz ∈ F . �

Proposition 42. If α ∈ K, then there exists a constructed tuple (z1, . . . , zn)
such that α = zn.

Proof. It follows from the definition of constructibility that α can be constructed
from finitely many stages from the set {0, 1} ⊂ Q. The result follows from
this. �

Proposition 43. Let E/F be a field extension with [E : F ] = n, and let α ∈ E.
Then deg(α/F ) divides n.

Proof. We know that [F [α] : F ] = deg(α/F ) = deg(minpoly(α/F )). By the
product of degrees formula, [E : F ] = [E : F [α]] · [F [α] : F ]. The result follows.

�
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Proposition 44. Let E be a constructed field. Then [E : Q] is a power of two.

Proof. Since E is a constructed field, there exists a constructed tuple (z1, . . . , zn),
with z1 = i, such that E = Q[z1, . . . , zn], with zi+1 ∈ Q[z1, . . . , zi].

Let Fi = Q[z1, . . . , zi] for i = 1, . . . , n; note E = Fn. We proceed by
induction on n.

For n = 1, we have z1 = i. Now minpoly(i/Q) = X2+1, and deg(z1/Q) = 2,
so the proposition is true in this case.

Now suppose that n > 1, and let F = Fn−1 and α = zn. By induction,
[F : Q] is a power of two. We also know that i ∈ F , so z ∈ F if and only if
<z,=z, z, |z|2 ∈ F .

Since α is constructible from F , it is the intersection of lines and circles given
by points in F .

Case 1: α is the point of intersection of two lines given by F .
Note that the slope of a line through two points in F is also in F ; let y = m1x+b1
and y = m2x+ b2 be lines which intersect at α, where m1, b1,m2, b2 ∈ F . Then
the point of intersection is the complex number α = b2−b1

m1−m2
+ m1b2−b1m2

m1−m2
i, whose

real and imaginary parts are in F , so α ∈ F in this case, and deg(α/F ) = 1.
Case 2: α is a point of intersection of a line and a circle given by F .

Let y = mx + b and (x − h)2 + (y − k)2 = r2 be the equations of the line and
the circle. Now m, b ∈ F . Since w = h+ ki is the center of the circle, h, k ∈ F .
Also there exists a point z ∈ C whose distance from w is r, so r = |w − z| ∈ F .
Substitution gives (x−h)2 +(mx+ b−k)2− r2 = 0; this is a quadratic equation
whose solution is of the form x = A+B

√
D, where A,B,D ∈ F . Let y = mx+b;

now α = x+ yi, and since x, y ∈ F [
√
D], so is α.

Case 3: α is a point of intersection of two circles given by F .
Subtracting the equations of the circles cancels both the x2 and the y2 terms,
producing a linear equation in x and y. Use this in combination with the equation
of one of the circles to reduce to Case 2. �

Proposition 45. Let α ∈ C be constructible. Then there exist p ∈ N such that
deg(minpoly(α/Q)) = 2p.

Proof. If α is constructible, there exists a constructed tuple (z1, . . . , zn) such
that α = zn. Let E = Q[z1, . . . , zn]; then α ∈ E and [E : F ] is a power of two.
By a previous proposition, deg(α/Q) divides [E : F ], so it is also a power of
two. �

Proposition 46. It is impossible to double a cube.

Proof. Start with a cube whose sides have length one. To construct a cube with
double the volume, one must be able to construct an edge of this cube; this
requires the constructibility of the number α = 3

√
2.

The minimum polynomial of α over Q is X3 − 2, so deg(α/Q) = 3. Since 3
is not a power of 2, α is not constructible. �



APPENDIX A

Archimedes and the Canned Sphere

1. Introduction

1.0.1. Historical Background. Mathematics always precedes physics. The
mathematics may be developed centuries before it is used, as is the case with
Apollonius (ca. 240 B.C.) and his abstract treatise Conic Sections, which pre-
ceded the usage by Copernicus and Kepler of ellipses to explain the orbits of
planets. Or the mathematics may be created by the physicist in order to solve
his physical problems, as was the case with Newton. Either way, the physics
cannot go forward until the mathematical model comes into existence.

Physics precedes engineering. What is physically possible is understood
before what is physically practical can be implemented.

Thus one wonders what the world would be like if we kicked forward the pace
of mathematical research during its reinvigoration in the fifteenth and sixteenth
century, say by 200 years. Would the technology necessary to prevent famine
have kept ahead of the growth of population? Would the great world wars have
been prevented?

Between the ancient Greeks and the early Renaissance, European civilization
was dominated first by the Roman Empire and then by the Holy Roman Church.
Science as we understand it dissolved during this period, and much that was
known to the Greeks was lost. After this long drought, during the 1400’s, many
brilliant people were being allowed to think and communicate their thoughts
again, and a period of reconstruction began.

The details of calculus, necessary for the advancement of physics, were
worked out during the late 1600’s; thus it took nearly 200 years to advance
to this point.

1.0.2. Discovery of the Palimpsest. In the first decade of the twentieth cen-
tury, a Danish philologist Johan Ludvig Heiberg (1854-1928) discovered an an-
cient prayer book in a library in Constantinople. Barely visible behind the Latin
text were Greek symbols. The book was an ancient parchment palimpsest.

Parchment is a material for the pages of a book, made from fine calf skin,
sheep skin or goat skin. A palimpsest is a manuscript page, scroll, or book that
has been written on, scraped off, and used again.

Heiberg came to realize that the Greek writing was a previously unknown
work of the ancient Greek genius Archimedes, who lived in the third century BC,
was written in the 10th century. In the 12th century it was imperfectly erased in
order that a liturgical text could be written on the parchment, and Archimedes’
work is still legible today. It was a book of nearly 90 pages before being made
a palimpsest of 177 pages; the older leaves were folded so that each became two
leaves of the liturgical book.
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Heiberg was not allowed to take the book from the library, so he had every
page photographed. Using only a magnifying glass, he attempted to read the
Greek text, and published what he could. Shortly thereafter it was translated
into English by Thomas Heath.

1.0.3. Contents of the Palimpsest. This book is known as The Method, or
Method Concerning Mechanical Theorems, and it describes the process by which
Archimedes discovered many of his results.

Although the only mathematical tools at its author’s disposal were what
we might now consider secondary-school geometry, he used those methods with
rare brilliance, explicitly using infinitesimals to solve problems that would now
be treated by integral calculus. Among those problems were that of the center
of gravity of a solid hemisphere, that of the center of gravity of a frustum of
a circular paraboloid, and that of the area of a region bounded by a parabola
and one of its secant lines. Contrary to historically ignorant statements found
in some 20th-century calculus textbooks, he did not use anything like Riemann
sums, either in the work embodied in this palimpsest or in any of his other works.
For explicit details of the method used, see how Archimedes used infinitesimals.

Historian Reviel Netz of Stanford University, with technical assistance from
several persons at the Rochester Institute of Technology, has been trying to
fill in gaps in Heiberg’s account. In Heiberg’s time, much attention was paid to
Archimedes’ brilliant use of infinitesimals to solve problems about areas, volumes,
and centers of gravity. Less attention was given to the Stomachion, a problem
treated in the Palimpsest that appears to deal with a children’s puzzle. Netz
has shown that Archimedes found that the number of ways to solve the puzzle is
17,152. This is perhaps the most sophisticated work in the field of combinatorics
in classical antiquity.

2. Archimedes Biography

287 B.C. Archimedes was born in Sicily around 287 B.C. His father was
an astronomer and mathematician named Phidias. Unfortunately, little else is
known about Archimedes’ early life. It is believed, however, that Archimedes’
family was a rich and noble one, perhaps related in some way to Hiero, King of
Syracuse.

269 B.C. Archimedes travelled to Egypt to study at Alexandria. This city
had been founded by Alexander the Great in 331 B.C, and by 300 BC was home
to 500,000 people. Alexandria was also the home of Euclid, who lived from
about 330 to 275 B.C. Euclid was a renowned mathematician and may best
be remembered for his book, “The Elements” which was the most important
geometry book in the world for over 2000 years. Archimedes undoubtedly studied
this book along with others in the great library of Alexandria, which contained
more than a million books in the form of scrolls of papyrus.

263 B.C. Archimedes returned to Syracuse after his studies in Alexandria
and settled down to a life of study and research. He would typically sit for hours
pondering geometry diagrams drawn in the sand floor of his home or on papyrus
scrolls. His experimentations soon made him indispensable to King Hiero, and
ultimately, to the rest of the world.

Archimedes’ abilities were put to good use by King Hiero. In one case, the
hold of a huge boat made for the King had become full of water after a heavy rain.
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Not sure how to remove the water from the ship, King Hiero asked Archimedes for
assistance. Archimedes created what is now know as the ”Archimedes Screw”. It
is a machine consisting of a hollow tube containing a spiral that could be turned
by a handle at one end. When the lower end of the tube was put into the hold
and the handle turned, water was carried up the tube and over the side of the
ship. The ”Archimedes Screw” soon became popular in Egypt as a device for
irrigating fields and in other forms, is still in use today.

King Hiero had commissioned a new royal crown for which he provided solid
gold to the goldsmith. But when the crown arrived, King Hiero was suspicious
that the goldsmith only used some of the gold, kept the rest for himself and added
silver to make the crown the correct weight. Archimedes was asked to determine
whether or not the crown was pure gold without harming it in the process.
Archimedes was perplexed but found inspiration while taking a bath. While
noticing that the water overflowed from the tub when he lowered himself into it,
he realized that he could measure the crown’s density if he could determine the
amount of water it displaced, or its ”volume”. Legend has it that Archimedes
was so exuberant about his discovery that he ran down the streets of Syracuse
naked shouting, ”Eureka!” which meant ”I’ve found it!” in Greek.

Archimedes found that the crown was indeed a fake proving that the gold-
smith had cheated.

King Hiero relied on Archimedes’ inventions for use in the military during
a time when there was great competition for power in the Mediterranean region
between Syracuse, Carthage and Rome. Putting his theories of levers and pulleys
to work, Archimedes built other machines designed to defend Syracuse.

216 B.C. King Hiero died in the year 216 B.C. and was succeeded by his 15-
year-old grandson Hieronymos. The new King formed an alliance with Hannibal,
the ruler of Carthage, which alarmed the pro-Roman faction within Syracuse.

215 B.C. Hieronymos was assassinated in the Greek city of Leontini, ending
his 13-month reign. After the assassination of Hieronymos, civil war erupted in
Syracuse between the pro-Carthaginian and pro-Roman factions, during which
most of Hiero’s family was killed. The pro-Carthaginian faction was eventu-
ally victorious and two brothers of mixed Carthaginian-Syracusan descent, Hip-
pokrates and Epikydes, took control of the city.

214 B.C. Marcellus led the Roman army in an invasion of Syracuse but they
were thwarted by the ingenuity of Archimedes. Among his many inventions were
the huge curved mirrors placed on top of the city walls. When the Roman fleet
was in sight the mirrors were turned to reflect the Sun’s rays onto the ships. The
heat was so great that many ships burst into flames. Other ships were destroyed
by huge boulders thrown by the catapults designed by Archimedes.

With the help of Archimedes’ incredible machines, Syracuse was protected
from the Roman army. One of these machines operated with great iron claws
that could seize boats by the prow, draw them up into the air, and plunge them
into the depths of the sea. Another projected huge wooden beams from the
island’s ramparts to gouge the hulls of enemy ships.

Unable to penetrate the devices which Archimedes had placed around the
borders of Syracuse, Marcellus ultimately surrounded the city and prevented
supplies from entering or leaving. The siege lasted over two years. Eventually,
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in 212 B.C., the Romans took advantage of an unguarded section of the city
walls and invaded the city.

212 B.C. During the siege of Syracuse, a Roman soldier burst through the
door of Archimedes and demanded that the great military genius accompany
him to the quarters of General Marcellus. Not realizing that the city had been
invaded, Archimedes refused, claiming he had yet to finish a mathematical prob-
lem that presently occupied his attention. The soldier, in anger, struck the
75-year-old Archimedes dead.

Marcellus was distressed upon hearing the news of the death, and ordered
that Archimedes be buried with honor. His tombstone was, as he wished, en-
graved with the geometrical diagram showing a sphere inside a cylinder, to re-
mind the world of his great discoveries.

3. The Method’s Journey

4th century A.D. During his life, Archimedes wrote out his theories on
papyrus scrolls. Succeeding generations preserved his works by copying and re-
copying them onto other scrolls. Somewhere, in the fourth century A.D., scribes
began to copy onto parchment, then bind them between wooden boards. This
was the earliest version of what’s known today as the ”book”.

10th century A.D. The Archimedes manuscript was copied onto parch-
ment sheets and bound between wooden boards. Although manufactured more
than a thousand years after the great mathematician’s death, this book, which
is now in the care of The Walters Art Gallery, is the earliest copy of Archimedes’
treatises to survive.

12th century A.D. Parchment was scarce and it was common practice to
re-use old manuscripts for newer writings. Apparently, the Archimedes text was
taken apart, most likely in Constantinople, for this purpose. A scribe disassem-
bled the manuscript and scraped off as much of the Archimedes text as he could.
He cut the leaves in half along the inner fold and turned the page leaves 90
degrees before folding them in half. This scribe ruled fresh lines and copied new
religious text onto the parchment, creating what’s known as a ”Palimpsest”, or
a text on parchment which has been overwritten with other text.

12th - 19th century A.D. Once the manuscript had become a religious
text, it was considered a sacred document and cared for in the Holy Land,
between Jerusalem and the Dead Sea. One of its homes was the monastery of
Mar Saba, historically an intellectual and spiritual center for the Greek Church.
The book was most likely used as religious text by the monastery’s inhabitants
for at least 400 years.

Early 1800’s The palimpsest was moved from the monastery to the library
of the Greek Patriarch in the Christian quarter of old Jerusalem. The book
did not remain there long, however, as it continued to travel in the highest of
religious circles. It is believed that the book travelled to the Church of the
Holy Sepulchre, because it ultimately ended up in the Church’s daughter house,
the Metochion in Constantinople the city where the manuscript had first been
created.

1846 A.D, Biblical scholar Constantine Tischendorf visited the Meto-
chion Of The Holy Sepulchre to study the library’s substantial collection of
manuscripts. At the time, he claimed to find nothing of particular interest,
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except for a palimpsest dealing with mathematics. Though he didn’t quite un-
derstand the importance of his discovery, he must have sensed the book’s value,
because he acquired one of its leaves now owned by the Cambridge University
Library in England.

1907 A.D. Danish philologist Johan Heiburg meticulously transcribed the
manuscript using nothing but a magnifying glass. It’s not known whether
Heiberg suspected the palimpsest’s true origins at first, but he ultimately re-
alized that this ancient manuscript was indeed a previously unknown treatise by
Archimedes, the great mathematician. His great achievement and extraordinary
find made headlines in the New York Times on July 16, 1907.

1998 A.D. The ownership of the palimpsest was disputed in federal court
in New York in the case of the Greek Orthodox Patriarchate of Jerusalem versus
Christie’s, Inc. The plaintiff contended that the palimpsest had been stolen
from one of its monasteries in the 1920s. Judge Kimba Wood decided in favor
of Christie’s Auction House on laches grounds.

October 29, 1998 Christie’s of New York held a much-publicized auction.
The Archimedes Palimpsest was sold for two million dollars to an anonymous
collector.

4. Archimedes Manuscripts

• Sand Reckoner
Attempts to remedy for the inadequacies of the Greek numerical nota-
tion system by showing how to express the number of grains of sand
required to fill the universe in a positional (base 100,000,000) numeral
system.

• Equilibrium of Planes (two volumes)
Find the centers of gravity of various plane figures and conics, and
establishes the “law of the level”.

• Quadrature of the Parabola
Finds the area of any segment of a parabola.

• Measurement of a Circle
Showed that the area constant was one quarter of the circumference
constant π, and bound this constant between 3 10

71 and 3 10
70 .

• On the Sphere and the Cylinder (in two volumes)
Shows that the surface area of any sphere is A = 4πr2, and that the
volume of a sphere is V = 4

3πr
3.

• On Spirals
Develops the properties of the tangents to the “spiral of Archimedes”,
given in polar coordinates as r = aθ.

• On Conoids and Spheroids
Finds the volumes of solids of revolution.

• On Floating Bodies (two volumes)
Find the positions that various solids will assume when floating in a
fluid, and establishes “Archimedes’ principle” (that the buoyant force
on a submerged object is equal to the weight of the displaced fluid).

• The Method
Describes the process of discovery in mathematics.
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5. Precursors of Archimedes

5.1. Pythagorean Irrational Numbers. The Pythagoreans proved the
existence of irrational numbers in the form of “incommensurable quantities”.
This tore at the fabric of their world view, based on the supremacy of whole
numbers, and it is legend that the demonstrator of irrational numbers was thrown
overboard at sea.

5.2. Zeno’s Paradoxes. Zeno (ca. 450 B.C.) developed his famous “para-
doxes of motion”.

5.2.1. The Dichotomy. The first asserts the non-existence of motion on the
ground that that which is in locomotion must arrive at the half-way stage before
it arrives at the goal. (Aristotle Physics, 239b11).

5.2.2. Achilles and the Tortoise. The [second] argument was called ”Achilles”,
accordingly, from the fact that Achilles was taken [as a character] in it, and the
argument says that it is impossible for him to overtake the tortoise when pur-
suing it. For in fact it is necessary that what is to overtake [something], before
overtaking [it], first reach the limit from which what is fleeing set forth. In [the
time in] which what is pursuing arrives at this, what is fleeing will advance a
certain interval, even if it is less than that which what is pursuing advanced.
And in the time again in which what is pursuing will traverse this [interval]
which what is fleeing advanced, in this time again what is fleeing will traverse
some amount. And thus in every time in which what is pursuing will traverse
the [interval] which what is fleeing, being slower, has already advanced, what is
fleeing will also advance some amount. (Simplicius(b) On Aristotle’s Physics,
1014.10)

5.2.3. The Arrow. The third is that the flying arrow is at rest, which result
follows from the assumption that time is composed of moments. He says that
if everything when it occupies an equal space is at rest, and if that which is in
locomotion is always in a now, the flying arrow is therefore motionless. (Aristo-
tle Physics, 239b.30) Zeno abolishes motion, saying ”What is in motion moves
neither in the place it is nor in one in which it is not”. (Diogenes Laertius Lives
of Famous Philosophers, ix.72)

5.2.4. The Stadium. The fourth argument is that concerning equal bodies
[AA] which move alongside equal bodies in the stadium from opposite directions
– the ones from the end of the stadium [CC], the others from the middle [BB] –
at equal speeds, in which he thinks it follows that half the time is equal to its
double. And it follows that the C has passed all the As and the B half; so that
the time is half. And at the same time it follows that the first B has passed all
the Cs. (Aristotle Physics, 239b33)

5.3. Eudoxus Method of Exhaustion. Eudoxus (ca. 370 B.C.) is re-
membered for two major mathematical contributions: the Theory of Proportion,
which filled the gaps in the Pythagoren theories created by the existence of
incommensurable quantities, and the Method of Exhaustion, which dealt with
Zeno’s Paradoxes. This method is based on the proposition: If from any magni-
tude there be subtracted a part not less than its half, from the remainder another
part not less than its half, and so on, there will at length remain a magnitude
less than any preassigned magnitude of the same kind.
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Archimedes credits Eudoxus with applying this method to find that the
volume of “any cone is on third part of the cylinder which has the same base
with the cone and equal height.”

5.4. Euclid’s Elements. Euclid of Alexandria (ca. 300 B.C.) wrote The
Elements, which may be the second most published book in history (after the
Bible). The work consists of thirteen books, summarizing much of the basic
mathematics of the time, spanning plane and solid geometry, number theory,
and irrational numbers.

Among the results in Euclid, we find

Result 1. The circumferences of two circles are to each other as their diameters.

Using modern notation, this says that if we are given two circles with diam-
eters D1 and D2, and circumferences C1 and C2, then

C1

C2
=
D1

D2
.

We can rearrange this to say
C1

D1
=
C2

D2
.

From this, one may conclude that for any given circle, the ratio between the
circumference and the diameter is a constant:

C

D
= p, so C = pD.

We shall call p the circumference constant.
Euclid later shows

Result 2. The areas of two circles are to each other as the squares of their
diameters.

That is, if A1 and A2 represent the area of the circles, then
A1

D2
1

=
A2

D2
2

,

which says that there is an area constant for any circle:
A

D2
= k, so A = kD2.

However, Euclid doesn’t mention, and possibly doesn’t realize, that p and k are
related.

Later still, Euclid shows

Result 3. The volumes of two spheres are to each other as the cubes of their
diameters.

Thus if V1 and V2 are the volumes of spheres of diameter D1 and D2, then
V1

D3
1

=
V2

D3
2

;

again, one sees that, for again given sphere, there is a volume constant m such
that

V

D3
= m, so V = mD3.
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6. Measurement of a Circle

Proposition 4. The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle is equal to the radius, and the other
to the circumference, of the circle.

Let be C be the circumference, r the radius, and A the area of the circle.
Let T be the area of a right triangle with legs of length r and C. Then T = 1

2rC.
Archimedes claims that A = T , so A = 1

2rC.

Lemma 5. Let h be the apothem and let Q be the perimeter of a regular polygon.
Then the area of the polygon is

P =
1
2
hQ.

Proof. Suppose the polygon has n sides, each of length b. Clearly Q = nb. Then
the area is subdivided into n triangles of base b and height h, so

P = n(
1
2
hb) =

1
2
hQ.

�

Lemma 6. Consider a circle of area A let ε > 0. Then there exists an inscribed
polygon with area P1 and a circumscribed polygon with area P2 such that

A− ε < P1 < A < P2 < A+ ε.

Proof. Archimedes simply says: “Inscribe a square, then bisect the arcs, then
bisect (if necessary) the halvesand so on, until the sides of the inscribed poly-
gonwhose angular points are the points o the division subtend segments whose
sum is less than the excess of the area of the circle over the triangle.” �

does not explicitly prove this

Proof of Proposition. By double reductio ad absurdum.
Suppose that A > T . Then A − T > 0, so there exists an inscribed regular

polygon with area P such that A − P < A − T . Thus P > T . If Q is the
perimeter and h the apothem of the polygon, we have

P =
1
2
hQ <

1
2
rC = T,

a contradiction.
On the other hand, suppose that A < T . Then T − A > 0, so there exists

a circumscribed polygon with area P such that P − A < T − A. Thus P < T .
However, if Q is the perimeter and h the apothem of the polygon, we have

P =
1
2
hQ >

1
2
rC = T,

a contradiction.
Therefore, as Archimedes writes, “since then the area of the circle is neither

greater nor less than [the area of the triangle], it is equal to it.” �
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Proposition 7. The ratio of the circumference of any circle to its diameter is
less the 3 1

7 but greater than 3 10
71 .

Proof. Inscribe a hexagon. Compute the area:

π =
C

D
>
Q

D
=

6r
2r

= 3.

Archimedes next doubles the number of vertices to obtain a regular do-
decagon. The computation of its area requires accurate extraction of

√
3, which

Archimedes estimates as
265
153

<
√

3 <
1351
780

,

which is impressively close. The Archimedes continues with 24, 48, and finally
96 sides, at each stage extracting more sophisticated square roots.

Next circumscribe a hexagon and continue to 96 sides. �

7. On the Sphere and the Cylinder

The two volume work entitled On the Sphere and the Cylinder is Archimedes
undisputed masterpiece, probably regarded by Archimedes himself as the apex
of his career. These two volumes are constructed in a manner similar to Euclid’s
Elements, in that it proceeds from basic definitions and assumptions, through
simpler known results, onto the new discoveries of Archimedes.

Among the results in this work are the following.

Proposition 8. The surface of any sphere is equal to four times the greatest
circle in it.

Technique of Proof. Double reductio ad absurdum: assumption that the area is
more leads to a contradiction, as does assumption that the area is less. �

Let us translate this into modern notation. Let r be the radius of the sphere
and let S be its surface area. Then the radius of the greatest circle in it is πr2.
Thus Archimedes shows that

S = 4πr2.

Proposition 9. Any sphere is equal to four times the cone which has its base
equal to the greatest circle in the sphere and its height equal to the radius of the
sphere.

Note that again, Archimedes has expressed the volume of the sphere in terms
of the volume of a known solid; this is because the Greeks did not have modern
algebraic notation. Using modern notation, we let r be the radius of the V be
the volume of the sphere. The volume of the cone of radius r and height r, as
determined by Eudoxus, is 1

3πr
3. Thus

V =
4
3
πr3.
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In this way, Archimedes found the relationship between the circumference
constant p, the area constant k (in Measurement of a Circle), and the volume
constant m: We have

C = pD, A = kD2, , and V = mD3,

and Archimedes has shown (in modern notation) that

C = πD (that is, p = π)

A = πr2 = π

(
D

2

)2

=
π

4
D (so k =

π

4
)

V =
4
3
πr3 =

4
3
π

(
D

2

)3

=
π

6
πD3 (so m =

π

6
)

From here, Archimedes now describes an astounding discovery.
Suppose we have a sphere of radius r, surface area S, and volume V . Inscribe

this sphere in a right circular cylinder, whose radius would also be r and whose
height would be 2r. Then the surface area Acyl of the cylinder is simply the
areas of the base and top circle, plus the area of the rectangle which forms the
tube of the cylinder:

Acyl = 2(πr2) + (2πr)(2r) = 6πr2.

Thus
Acyl : Asph = (6πr2) : (4πr2) = 3 : 2.

Moreover, the volume of the cylinder is the area of the circular base times
the height:

Vcyl = (πr2)(2r) = 2πr3.
Again, we have

Vcyl : Vsph = (2πr3) : (
4
3
πr3) = 3 : 2.

This so impressed Archimedes that he requested that his tombstone be
engraved with a sphere inscribed in a cylinder, together with the ration 3 :
2. Apparently, Marcellus, the conqueror of Syracuse, was so impressed with
Archimedes, that he granted this wish.

8. Equilibrium of Planes

In the treatise Equilibrium of Planes, Archimedes establishes the law of the
lever.

Result 10. Let W1 and W2 be the respective weights of two objects placed on a
lever on opposite sides of a fulcrum with respective distances d1 and d2. Then
the objects balance if and only if

d1W1 = d2W2.

This is proven by Archimedes, following three assumptions:
(a) Equal weights at equal distances from the fulcrum balance. Equal

weights at unequal distances from the fulcrum do no balance, but the
weight at the greater distance will tilt its end of the lever down.

(b) If, when two weights balance, we add something to one of the weights,
they no longer balance. The side holding the weight we increased goes
down.
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(c) If, when two weights balance, we take something away from one, they
no longer balance. The side holding the weight we did not change goes
down.

9. The Method

An infintesimal is a number greater in absolute value than zero, yet smaller
than any positive real number. A number x 6= 0 is an infintesimal if and only
if every sum |x| + · · · + |x|of finitely many terms is less than 1, no matter how
large the finite number of terms. In that case, 1

x is larger than any positive real
number.

Using modern techniques, it is possible to construct a field which contains
the real numbers as a subfield, and which contains infinitesimals. However, it is
not, and cannot be, complete. This last fact was known to Archimedes, and in
fact is called the Archimedean property of the real numbers:

Proposition 11 (Archimedean Property). Let F be a complete ordered field (for
example, F = R). Let a, b ∈ F. Then there exists a natural number n ∈ N such
that na > b.

Proof. Suppose not, then the set X = {na | n ∈ N} is bounded, and by com-
pleteness, it has a least upper bound, say c.

ETC. �

Thus, Archimedes worked under the premise that infinitesimals were appro-
priate for intuitive thought and discovery, but not for proof.

For example, in Quadrature of a Parabola, Archimedes uses the method of
exhaustion to show that the area of a segment of a parabola is

area segment =
4
3
area inscribed triangle.

But the method of exhaustion is not how he discovered this formula. In fact,
in The Method, he writes: “certain things first became clear to me by a mechanical
method, although they had to be proved by geometry afterwards because their
investigation by the said method did not furnish an actual proof. But it is of
course easier, when we have previously acquired, by the method, some knowledge
of the questions, to supply the proof than it is to find it without any previous
knowledge.”

As an example of this, consider the first proposition from the palimpsest.





APPENDIX B

Computing

1. What is Computing?

1.1. Definitions. Modern computers receive, store, process, and transmit
information. Information, to a computer, consists of a sequence of zeros and
ones.

Electrical current transmitted on a wire is typically referred to as either
• analog: continuously varying;
• digital: either on or off.

In digital transmission, with on being 1 and off being 0, we see a sequence of
zeros or ones. So, computers understand digital information.

How does the computer interpret the zeros and ones? Why is this called
“digital”?

To understand this more fully, first we investigate the meaning of “to com-
pute”.

According to my dictionary, we have these definitions:
• Compute: to determine by reckoning; to calculate
• Calculate: to reckon or determine by reasoning
• Reckon: to count

So by definition, a computer counts and uses reasoning (that is, logic). Counting
and reasoning combine to produce arithmetic (adding, multiplying, etc.) The
word “calculate” comes from calculus, a pebble used in counting. This in turn
comes from calx, or limestone.

1.2. Counting. There is archeological evidence that man began counting
as far back as 50,000 years ago.

The jaw bone of a wolf has been discovered which is 20,000 years old, and
has 25 notches slashed in groups of five. So, this bone is evidence that man used
“technology” to aid in counting at least that long ago.

However, this evidence indicates that actually, an earlier counting technology
had been developed: that man counted on his five fingers per hand earlier than
this.

Many undeveloped tribes have been discovered that use the word “hand” to
mean five. A “man” may mean ten or twenty, depending on the tribe. One tribe
used the word “mattress” to mean forty.

Now when we count to ten on two hands, the number represented is simply
the number of fingers held up. Which fingers, on which hand, is irrelevant to the
number indicated.

However, consider counting to thirty on two hands by letting the fingers on
the left hand each have a value of five. When the right hand reaches five fingers
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up, lower them and raise an additional finger on the left hand. This is counting
in base five.

The ancient Mayans had a method of counting uses rocks and sticks. Each
rock was worth one and each stick was worth five. Then, one could trade five
rocks for a stick. This later became how they wrote numbers. After four sticks,
however, the Mayans got tired. What could they do? They used position to
indicate powers of twenty. Under this scheme, each position represented a power
of twenty, and a shell was used as a place holder (that is, a shell is zero).

Actually, we can count from 0 to 31 on one hand. Why 31? Because it is
25 − 1. Here’s how. Evaluate each finger on your right hand as follows:

• right thumb = 1
• right index finger = 2
• right middle finger = 4
• right ring finger = 8
• right pinky = 16

Then count according to this chart:

0 no fingers 16 pinky
1 thumb 17 pinky + thumb
2 index 18 pinky + index
3 index + thumb 19 pinky + index + thumb
4 middle 20 pinky + middle
5 middle + thumb 21 pinky + middle + thumb
6 middle + index 22 pinky + middle + index
7 middle + index + thumb 23 pinky + middle + index + thumb
8 ring 24 pinky + ring
9 ring + thumb 25 pinky + ring + thumb
10 ring + index 26 pinky + ring + index
11 ring + index + thumb 27 pinky + ring + index + thumb
12 ring + middle 28 pinky + ring + middle
13 ring + middle + thumb 29 pinky + ring + middle + thumb
14 ring + middle + index 30 pinky + ring + middle + index
15 ring + middle + index + thumb 31 all fingers

This is counting using a positional base two scheme. Positional, because the
position of the finger which is up or down matters. Base two, because each
finger has two possible values (up or down).

Suppose we evaluate each finger on our left hand as follows:

• left thumb = 32
• left index finger = 64
• left middle finger = 128
• left ring finger = 256
• left pinky = 512

Then we could count to 210 − 1 = 1023. If we additionally used our toes, we
could count to 220 − 1 = 1048575.

1.3. Digital Information. Computers use only zeros and ones to count,
reason, and store information.
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We have seen how two count using positioned zeros and ones, and we will
explore this more later in our study of bases.

Information is received, stored, and transmitted as a sequence of zeros and
ones. The program must interpret how to view a given sequence of zeros and
ones; this is done through the concept of data types. Having gotten used to
binary numbers through studying bases, we will then explore how computer
store different types of information in binary codes.

Zeros and ones are also used as the logical values of false and true. Logical
operators such as AND and OR combine inputs of zeros and ones to create an
output. We will study the truth tables which define the logical operators, and
then briefly look at the circuitry which implements these operators through what
are known as gates. This will give some idea of how a computer reasons.

2. A Brief History of Early Computing

2.1. Definitions.
• Compute: to calculate.
• Calculate: to reckon; to reason.
• Reckon: to count.
• Reason: to think logically.
• The word calculate is derived from calculus, meaning a stone used in

counting, which is in turn derived from calx, meaning limestone.

2.2. Primitive Counting Terminology.
• Digit: one (one finger).
• Hand: five (five fingers).
• Man: ten (ten fingers).
• Man: twenty (ten fingers, ten toes).
• Mattress: forty.

2.3. Prehistoric Computing.
• 50,000 years old: archeological evidence of counting by man.
• 20,000 years old: bone with notches in groups of five.

2.4. Sticks and Stones.
• Ancients Mayans used sticks and stones to count. A stone was worth

one and a stick was worth five.
• A number consisted of a group of stick and stones; adding the values

of the sticks and stones produced the number. Adding two numbers
amounted to combining the two groups.

• To represent large numbers, Mayans developed a positional base twenty
system wherein a shell represented zero.

2.5. Mayan Numerals.
• The Mayans later developed writing, and their symbols for numerals

reflected these origins.

2.6. Egyptian Numerals.
• The Egyptians used hieroglyphic numerals in an additive, nonpositional

system. These pictures were carved in stone.
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2.7. Babylonian Numerals.
• The Babylonians produced cuneiform writing, which consisted of

wedges pressed into clay tablets. They developed a base sixty posi-
tional numeral system.

2.8. Sand Trays (2400 B.C.).
• The ancient Babylonians used sand trays to do mathematical scratch

work.
• Combining the sand tray with stones led to a computational tool, using

stones to represent one, ten, sixty, etc., depending on their position.

2.9. Counting Boards (300 B.C.).
• Boards with fixed positions were designed to hold the stones used in

computation.
• The Salamis tablet is a counting board used by the Babylonians circa

300 B.C. It is a slab of white marble measuring 149cm in length, 75cm
in width and 4.5cm thick.

2.10. The Abacus (100 A.D.).
• Eventually, the stones were place on rods to fix their position. This led

to the abacus, from the Greek word abax, meaning sand tray.

2.11. Origins of Algebra (800 A.D.).
• Ancient Greeks, masters of geometry, had no algebra and a difficult

numeral system.
• Ancient Hindus invented our current numeral system, using positional

base ten and zero.
• Hindus and Arabs explored algebraic notation.
• “Algebra” comes from the Arabic al-jabr “reunion”, “resetting of bro-

ken parts”, used in the title of al-Khwarizmi’s influential work ilm al-
jabr wa’l-muqbala, “the science of restoration and equating like with
like”.

2.12. Middle Ages (300-1200 A.D.).
• Technology, knowledge, and nearly all intellectual endeavors came to

a virtual standstill in Europe during the period of dominance by the
Holy Roman Empire.

• Communication with the east sparked the European Renaissance, and
with it, ideas for computational technology.

2.13. Da Vinci’s Mechanical Calculator (1500 A.D.).
• Leonardo Da Vinci, Italian painter, musician, sculptor, architect, and

engineer, created drawings of a mechanical calculator, working models
of which have since been constructed.

2.14. Napier’s Bones (1600 A.D.).
• John Napier, Scottish mathematician, inventor of logarithms, invented

a tool called Napier’s Bones, which were multiplication tables inscribed
on strips of wood or bone.
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2.15. Oughtred’s Slide Rule (1620 A.D.).

• William Oughtred, English mathematician and clergyman, early ex-
plorer of Calculus, invented the slide rule using Napier’s logarithms.

2.16. Pascal’s Arithmetic Machine (1640 A.D.).

• Blaise Pascal, French mathematician, physicist, and theologian, is cred-
ited with the invention of the first operational calculating machine. He
developed an operating model of the Arithmetic Machine to help his
father add sums of money.

2.17. Leibnitz’ Step Reckoner (1670 A.D.).

• Gottfried von Leibnitz: French mathematician, philosopher, and
lawyer, cocreator of Calculus, developed the Step Reckoner, a device
which, as well as performing additions and subtractions, could multiply,
divide, and evaluate square roots by series of stepped additions.

2.18. Jacquard’s Punched Cards (1800 A.D.).

• Joseph-Marie Jacquard, French silk weaver, invented a way of automat-
ically controlling the warp and weft threads on a silk loom by recording
patterns of holes in a string of cards.

2.19. Babbage’s Engines (1830 A.D.).

• Charles Babbage, English mathematician and inventor, designed the
Difference Engine to automatically compute mathematical tables.

• Later, he designed the Analytical Engine, intended to use punched
cards, sequencing, branching, and looping to control an automatic cal-
culator.

2.20. Wheatstone and Morse’s Telegraphs (1840 A.D.).

• Sir Charles Wheatstone invented the first British telegraph.
• Samuel Morse invented the first American telegraph, using dots and

dashes. This became the standard known as Morse code.

2.21. Wheatstone’s Tape (1860 A.D.).

• Wheatstone introduced paper tapes as a medium for the preparation,
storage, and transmission of data in the form of Morse Code.

• The paper tape used two rows of holes to represent Morse’s dots and
dashes. Outgoing messages could be prepared off-line on paper tape
and transmitted later.

2.22. Sholes’ Keyboard (1874 A.D.).

• Christopher Latham Sholes invented the QWERTY keyboard.

2.23. Hollerith’s Tabulating Machine (1890 A.D.).

• American inventor Herman Hollerith used punched cards to represent
the data gathered for the 1890 American census, and to read and collate
this data using an automatic machine. His company became IBM in
1924.
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2.24. De Forest’s Vacuum Tubes (1906 A.D.).
• In 1879, Thomas Edison demonstrates the incandescent light bulb.
• In 1883, John Ambrose Fleming uses this to convert electromagnetic

radiation into electricity, the precursor of the radio. He produced 2-
element vacuum tubes (diodes).

• In 1906, Lee de Forest produced 3-element vacuum tubes (triodes),
which could be used as both an amplifier and a switch.

2.25. Turing’s Machine (1937 A.D.).
• Alan Turing, English logician and mathematician, invented the abstract

Turing Machine, a theoretical construct which helped prove the non-
computability of certain arithmetic results.

• The abstraction involves the movement of a sequence of cells called a
“tape”.

2.26. Flower’s COLOSSUS (1941 A.D.).
• Sir Tommy Flowers, British engineer, together with Turing, designed

and constructed COLOSSUS from 1941 to 1943 during WW II to break
German encryption. COLOSSUS has been credited as the 1st pro-
grammable computer.

2.27. Princeton’s ENIAC (1943 A.D.).
• Princeton University constructed ENIAC, the 1st truly general purpose

programmable computer, between 1943 and 1946.
• Miles of wiring
• 70,000 resistors, 10,000 capacitors
• 18,000 vacuum tubes
• No monitor
• 3,000 blinking lights
• Cost 486,000 dollars
• 100,000 additions per second
• Weighed 30 tons
• Filled a 30x50 foot room
• Could be replaced today by one fingernail-size silicon chip

2.28. The First “Bug” (1945 A.D.).
• On September 9th, 1945, a moth flew into the wiring of the Harvard

Mark II Relay Calculator, which was in service at the Naval Weapons
Center in Dahlgren, Virginia, causing it to malfunction.

• The operator “debugged” the machine by removing the insect.

2.29. Eckert-Mauchly’s UNIVAC (1951 A.D.).
• John William Mauchly and J. Presper Eckert Jr. produce the UNI-

VAC (Universal Automatic Computer), the 1st commercially available
computer.

• Handled letters as well as numbers.
• Separated input/output from computation.
• The Eckert-Mauchly Computer Company was eventually purchased by

Sperry-Rand.
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2.30. Transistors.
• Transistors, which replaced vacuum tubes, were developed between

1947 and 1959.
• The advent of transistors revolutionized electronics and computing; this

is a story unto itself, to be explored in the next installment.

2.31. References.
• http://www.maxmon.com/history.htm
• http://www.pbs.org/transistor/index.html
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Important Mathematicians

1. Obscured by Time

Prehistoric

Egyptian

Babylonian

2. Ancient Greek Geometry

Thales of Miletus (Greek 624 BC - 547 BC)

Pythagoras of Samos (Greek 569 BC - 475 BC)

Hippocrates of Chios (Greek 470 BC - 410 BC)

Plato of Athens (Greek 427 BC - 347 BC)

Eudoxus of Cnidus (Greek 408 BC - 355 BC)

Euclid of Alexandria (Greek 325 BC - 265 BC)

Archimedes of Syracuse (Greek 287 BC - 212 BC)

Apollonius of Perga (Greek 262 BC - 190 BC)

Diophantus of Alexandria (Greek 200 AD - 284 AD)

3. Ancient Greek Astronomy

Aristotle of Athens (Greek 384 BC - 322 BC)

Aristarchus of Samos (Greek 310 BC - 230 BC)

Eratosthenes of Cyrene (Greek 276 BC - 194 BC)

Ptolemy of Alexandria (Roman 85 - 165)

4. Transition

Sun Zi (Chinese 400-460)
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Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (Arabic 790 - 840)

Omar Khayyam (Persian 1048 - 1122)

Leonardo Pisano Fibonacci (Italian 1170 - 1250)

5. Cubic Polynomials

Luca Pacioli (Italian 1445 - 1517)

Scipione del Ferro (Italian 1465 - 1526)

Nicolo Fontana Tartaglia (Italian 1500 - 1557)

Girolamo Cardano (Italian 1501 - 1576)

Lodovico Ferrari (Italian 1522 - 1565)

Rafael Bombelli (Italian 1526 - 1572)

Franois Vite (French 1540 - 1603)

6. Logarithms

Johann Werner (German 1468 - 1522)

John Napier (Scottish 1550 - 1617)

Henry Briggs (English 1561 - 1630)

7. Early Astronomy

Leonardo da Vinci (Italian 1452 - 1519)

Nicolaus Copernicus (Polish 1473 - 1543)

Tycho Brahe (Danish 1546-1601)

Galileo Galilei (Italian 1564 - 1642)

Johannes Kepler (German 1571 - 1630)

8. Analytic Geometry

René Descartes (French 1596 - 1650)

Pierre de Fermat (French 1601 - 1665)

Blaise Pascal (French 1623 - 1662)
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9. Early Calculus

Bonaventura Cavalieri (Italian 1598-1647)

John Wallis (English 1619-1703)

Isaac Barrow (English 1630 - 1677)

Isaac Newton (English 1642-1727)

Gottfried Leibniz (German 1646-1716)





APPENDIX D

Problems

In construction problems, describe each step, and draw all steps with a
straight-edge and compass, labeling each point significant for the construction.
Explain why your construction works.

1. Easier

Problem 1. State the base and type (simple, multiplicative, ciphered, or posi-
tional) used by the given numeral system.

(a) Egyptian hieroglyphic
(b) Babylonian
(c) Greek
(d) Chinese
(e) Mayan

Problem 2. Write 1070 in Mayan.

Problem 3. Find the base six radix expansion of
271
54

.

Problem 4. (Babylonian Fractions)

Let x =
5
72

and b = 60. Find the base b radix expansion of x. (Hint: x = 5a
72a ,

where 72a is a power of 60.)

Problem 5. Using a straight edge and compass, construct the circle passing
through three given points. Label the original points, all necessary constructed
points, and describe exactly how the constructed points were created.

Problem 6. (Greek Geometry)
Find the area of a regular octagon inscribed in a unit circle.

Problem 7. The key definition of Eudoxus’ theory of proportion is laid out in
Euclid’s Elements.

Elements Book V Definition 5
Magnitudes are said to be in the same ratio, the first to the second and the
third to the fourth, when, if any equimultiples whatever are taken of the first
and third, and any equimultiples whatever of the second and fourth, the former
equimultiples alike exceed, are alike equal to, or alike fall short of, the latter
equimultiples respectively taken in corresponding order.
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Let a, b, c, d ∈ R be positive real numbers. Consider the proposition:

a

b
=
c

d
⇔ ∀m,n ∈ N,


ma > nb⇔ mc > nd;
ma = nb⇔ mc = nd;
ma < nb⇔ mc < nd.

(a) Identify the italicized words in the definition with the exact mathemat-
ical symbols in the proposition.

(b) Prove the proposition from a modern perspective.

Problem 8. (Euclidean Algorithm)
Let m = 80 and n = 167. Find x, y, d ∈ Z such that d = gcd(m,n) and

mx+ ny = d.

Problem 9. (Diophantus’ Theorem)
Let a, b, c ∈ Z with a2 + b2 = c2. Show that if a is odd, then b + c is a perfect
square.

Problem 10. Find the area of a regular octagon inscribed in the unit circle.

Problem 11. Consider the cubic curve with equation

y2 = x3 − 3x+ 1.

Find a rational point on the curve other than (0,±1).

Problem 12. Let n ∈ Z with n ≥ 2. Let a, b, c, d ∈ Z with a ≡ c (mod n) and
b ≡ d (mod n).
Show that ab ≡ cd (mod n).

Problem 13. Find c ∈ Z with 0 ≤ c < 221 such that c ≡ 7 (mod 13) and
c ≡ 11 (mod 17).

Problem 14. Let m = 41, n = 61, a = 21, and b = 31.

(a) Find x and y so that mx+ ny = 1.
(b) Find c ∈ Z with 0 ≤ c < 3501 such that c ≡ a (mod m) and c ≡

b (mod n).

Problem 15. Define a sequence for real number (Gn) by G1 = 1, G2 = 1, and
Gn+2 = 3Gn +Gn+1.
Let (an) be the sequence defined by an = Gn+1

Gn
.

(a) Compute the first 5 terms of (Gn).
(b) Compute the first 5 terms of (an).
(c) Write an+1 in terms of an.
(c) Compute lim an.

Problem 16. Consider the cubic equation

x3 + 3x2 + 6x+ 7 = 0.

(a) Substitute x = y − 1 to obtain an equation without a y2 term.
(b) Use the method of Tartaglia to compute y which satisfies this equation.
(c) Find x which satisfies the original equation.
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Problem 17. (Titles)
Indicate the author of each manuscript. Choose from these authors:
Archimedes, Appolonius, Cavalieri, Descartes, Diophantus, Euclid, Fibonacci,
Gauss, Napier, Newton.

(a) Principia Mathematica
(b) Liber Abaci
(c) Arithmetica
(d) The Elements
(e) La geometrie
(f) Disquisitiones arithmeticae
(g) Conic Sections
(h) Geometrica indivisibilibus
(i) On the Sphere and the Cylinder

Problem 18. (Archimedes)
To compute π, Archimedes found the areas of many regular polygons. Find the
area of a regular dodecagon inscribed in the unit circle.

Problem 19. (Diophantus)
To find Pythagorean triples, Diophantus consider the intersection of the unit
circle with a line through (−1, 0) with rational slope. Find the Pythagorean
triple (a, b, c), with a, b, c ∈ Z, gcd(a, b, c) = 1, and a2 + b2 = c2, that this
technique produces when the slope of the line is 3

5 .

Problem 20. (Tartaglia)
To solve equations of the form x3 + mx = n, Tartaglia set x = t − u and used
the substitutions m = 3tu and n = t3 − u3. Apply this technique to find the
solutions to x3 + 9x = 20.

Problem 21. (Descartes)
To compute tangents, Descartes used the discriminant of a quadratic equation
to find the circle centered on the x-axis and tangent to a given curve at a given
point. Use this technique to find the center (a, 0) of such a circle, when the
equation is 2x2 − y2 = 1, the point is (1, 1), and a > 1

2 .

Problem 22. (Leibnitz)
To compute the sum of the reciprocals of the triangular numbers, Leibnitz used
a telescoping sum. Reproduce this argument.

Problem 23. (Euler)
To compute the sum of the reciprocals of the square numbers, Euler considered
the zeros of the function sinx/x to produce the equation

∞∑
k=0

(−1)k x2k

(2k + 1)!
=

∞∏
n=1

(
1− x2

π2n2

)
.

He then equated the coefficients of the x2 term on both sides and obtained∑∞
n=1

1
n2 = π2

6 .
(a) Compute the sum of the reciprocals of the even square numbers by

substituting x 7→ x/2.
(b) Compute the sum of the reciprocals of the odd square numbers by

subtraction.
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Problem 24. (Pythagorean Triples)
The Babylonians generated tables of Pythagorean triples (a, b, c) such that a
is sexagesimally regular. Euclid’s Elements supplied a technique for computing
Pythagorean triples using the equations

a = 2uv, b = u2 − v2, c = u2 + v2.

Diophantus proved that this produces all Pythagorean triples.
Thus the following function generates Pythagorean triples:

φ : N× N → N× N× N by φ(u, v) = (2uv, u2 − v2, u2 + v2).

Set

S = {n ∈ N | 1 ≤ n ≤ 10 and n is decimally regular};
U = {(u, v) ∈ S × S | v < u and gcd(u, v) = 1}.

(a) Find S.
(b) Find U .
(c) Find φ(U).

Problem 25. (Regular Solids)
The regular solids were studied by the Pythagoreans, the Platonists, and Euclid.

(a) List the regular solids. State the type of regular polygon from which
each solid is constructed. Find the number of faces F , the number of
edges E, and the number of vertices V . Compute F − E + V .

(b) Luca Pacioli (1509) used three intersecting golden rectangles to con-
struct a regular solid whose faces are equilateral triangles with sides
of length one. Use this construction to find the radius of a sphere in
which such a solid can be transcribed.

Problem 26. (Diophantine Geometry)
A rational curve is the set of solutions to a polynomial equation in two variables
whose coefficients are rational numbers. A rational point on a curve is a solution
whose coordinates are rational numbers.

Diophantus (Alexandria, 2nd century A.D.) realized that, given two rational
points on a cubic curve, the slope between them would be rational, and so the
third point of intersection between the line and the curve would produce another
rational point.

Consider the curve given by the equation

y2 = x3 − 4x+ 9.

By trying small values for x, find four rational points on this curve. Select two
points such that the slope of the line between them is 3. Compute this line.
Intersect this line with the curve to find two additional rational points.

Problem 27. (Congruence)
Euclid’s Elements contains a description of the Euclidean algorithm for find x, y
such that

mx+ ny = gcd(m,n).
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The proof of the Chinese Remainder Theorem uses this fact to produce solutions
to systems of congruences of the form

a ≡ c (mod m);

b ≡ c (mod n).

Let m = 17, n = 37, a = 7, and b = 11.
(a) Find x and y such that mx+ ny = 1.
(b) Find c with 0 ≤ c < mn such that a ≡ c (mod m) and b ≡ c (mod n).

Problem 28. Constructibility [Extra Credit]
Let A be a set of points in a plane P. Let L(A) be the set of all lines in P which
pass through at least two points in A, and let C(A) be the set of all circles in
P pass through a point in A and whose center is a different point in A. Let
O(A) = L(A) ∪ C(A). Define

S(A) = {z ∈ P | z ∈ O1 ∩O2 for some O1, O2 ∈ O(A)}.

(a) If A contains one point, how large is S(A)?
(b) If A contains two points, how large is S(A)?
(c) If A contains three collinear equally spaced points, how large is S(A)?
(d) If A contains three collinear unequally spaced points, how large is S(A)?
(e) If A contains the vertices of an equilateral triangle, how large is S(A)?
(f) If A contains the vertices of an acute isosceles triangle, how large is

S(A)?
(g) If A contains the vertices of an obtuse isosceles triangle, how large is

S(A)?
Include a drawing to justify each case.

Problem 29. Given two points A,B in a plane, describe all steps necessary to
construct a point C such that AC ⊥ AB and 4ABC is an isosceles triangle.

Problem 30. Let d = gcd(728, 231). Use that Euclidean Algorithm to find
d, x, y ∈ Z such that

mx+ ny = d.

2. Harder

Problem 31. Let m and n be integers with m,n ≥ 3. Let d = gcd(m,n) and
let k = mn

d . Given a regular m-gon and a regular n-gon, construct a regular
k-gon.

Problem 32 (Regarding Archimedes). Let P be a regular n-gon and let O be its
center. Let A and B be consecutive vertices on P and and assume that |OA| = 1.
Let M be the midpoint between A and B. Find |OM | as a function of n.

Problem 33. Solve the following equations for the positive integers n and b.
(a) n = (13425)b = (4115)2b

(b) n = (1234)b = (532)2b−1

(See Eves Problem Study 1.8.)

Problem 34. A Pythagorean triple is and ordered triple (a, b, c) of positive
integers such that a2 + b2 = c2.
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(a) Show that there exists a Pythagorean triple (a, b, c) for every integer
a ≥ 3.

(b) Show that there exist only finitely many Pythagorean triples (a, b, c)
for each integer a ≥ 3.

(See Eves Problem Study 3.6 and discussion on pp. 81-82)

Problem 35. Given line segment AB of length 11 and CD of length 3, construct
a point C on AB such that |CB| = x, where x is a solution to the quadratic
equation

x2 − 11x+ 9 = 0.
State the exact value of x. (See Eves Problem Study 3.10a and discussion on
pp. 88-89)

Problem 36. Given a two points A and B, construct a point Z such that
∠BAZ = ∠ABZ = 75◦.

Problem 37. Compute the area of a regular pentagon inscribed in a unit circle.

Problem 38. Draw neatly with straightedge and compass, describing each step.
(a) Given two points, construct an angle of 45◦.
(b) Trisect the 45◦ angle.
(c) Does this show that all angles can by trisected?

Problem 39. Using straightedge and compass, construct an angle of 54◦. De-
scribe each step, discussing why your construction is effective.

Problem 40. Compute the volume of a regular icosahedron inscribed in a sphere
of radius 1.

Definition 1. Let m,n ∈ Z. The least common multiple of m and n is a positive
integer l ∈ Z such that

(a) m | l and n | l;
(b) m | k and n | k implies l | k.

Definition 2. Let n ∈ Z with n ≥ 2. Set Zn = {r ∈ Z | 0 ≤ r < n}. Define a
function

ρn : Z → Zn by ρn(a) = the remainder when n is divided by a.

We call ρ the residue map.

Definition 3. Let m,n ∈ Z with m ≥ 2, n ≥ 2. Define a function

σm,n : Zmn → Zm × Zn by σm,n(a) = (ρm(a), ρn(a)).

We call σ the joint residue map.

Problem 41. Let m,n ∈ Z with m ≥ 2 and n ≥ 2. Let d = gcd(m,n) and
l = lcm(m,n).

(a) Show that if d = 1, then σm,n is bijective.
(b) Show that if a ≡ b (mod l), then σm,n(a) = σm,n(b).

Problem 42. (Fibonacci)
Recall that the Fibonacci sequence (Fn) is defined by F1 = 1, F2 = 1, and
Fn+2 = Fn + Fn+1, and that limn→∞

Fn+1
Fn

= φ, where φ = 1+
√

5
2 .
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Let b ∈ R with b ≥ 1 and define a sequence (Gn) by G1 = 1, G2 = 1, and
Gn+2 = Gn + bGn+1.

Let c ∈ R with c ≥ φ. Find b such that limn→∞
Gn+1
Gn

= c.

Problem 43. (Tartaglia)
Recall that Tartaglia viewed the cube x3 as (t − u)3 to find solutions to cubic
equations.

Let f(x) = x3 + 3x2 + 6x− 8. Find the real zero of f using Tartaglia’s cube
plus cosa method.

Problem 44. (Descartes)
Recall that Descartes used the concept of expanding circles and the ability to
compute the number of real solutions to quadratic equations to find tangents.

Find the distance between the curve x = y2 and the point (3, 0) using
Descartes’ discriminant method.

Problem 45. (Napier)
Recall that Napier desired to find a function to convert multiplication into addi-
tion. We may use techniques of Calculus unavailable to him to see that he had
very little choice. The modern definition is

log x =
∫ x

1

dt

t
and logb(x) =

log x
log b

.

Let f : (0,∞) → R be a differentiable function which is not constantly zero
and satisfies

f(ab) = f(a) + f(b) for all a, b ∈ (0,∞).
Show that there exists b ∈ R such that f(x) = logb(x).

Problem 46. Let x = 271
200 (expressed in decimal). Find the base sixty radix

expansion of x. (Hint: first multiply the numerator and denominator by some
number n, then convert the numerator to base six. If you choose n wisely, you
will now be almost done.)

Problem 47. Given two points A and B, construct a point C so that 4ABC
has angles 30◦, 60◦, and 90◦.

Problem 48. Let m = 52, n = 77, a = 5, and b = 7.
(a) Find x, y ∈ Z such that mx+ ny = 1.
(b) Find c ∈ Z with 0 ≤ c < mn such that c ≡ a (mod m) and c ≡

b (mod n).

Problem 49. Consider Z31 = {0, 1, . . . , 30} (the bar notation is understood).
(a) Find a ∈ Z31 such that 2a = 1.
(b) Find c, d ∈ Z31 such that c2 = d2 = 5.
(c) Let f(x) = x2 − x− 1. Find m,n ∈ Z31 which are distinct solutions to

f(x) = 0.

Problem 50. Regarding power series:
(a) Write the Taylor series for ex.
(b) Use the Taylor series of ex to find the Taylor series of ex2

.
(c) Use the first four terms of the Taylor series of ex2

to estimate
∫ 2

0
ex2

dx.
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Lemma 4 (Cyclotomic Lemma). If p be a positive prime integer, then the poly-
nomial

f(X) = 1 +X +X2 + · · ·+Xp−1

is irreducible over Q.

Problem 51. Regarding complex numbers and constructibility:
(a) Describe the relationship between a regular n-gon and the zeros of the

polynomial Xn − 1.
(b) Use the Cyclotomic Lemma to show that a regular heptagon (n = 7)

is not constructible.



APPENDIX E

Solutions to Problems

Problem 1. (6.7 Apollonius on Tangencies) In his lost treatise on Tangen-
cies, Apollonius considered the problem of drawing a circle tangent to three
circles, including degenerate forms of a circle including a point or a line.

(a) Find the number of cases, depending on whether we have points, lines,
or circles, and the maximum number of solutions in each case.

(b) Given points A and B and line L, find all circles through the points
and tangent to the line.

(c) Reduce the case of two lines and a point to the case of part (b).

We will use the following geometric lemmas.

Lemma 1. Let T be a point on a circle C with center D, and let L be a line
through T . Then L is tangent to C if and only if the line through D and T is
perpendicular to L.

Lemma 2. Let A, B, and C be distinct points. Then there exists a unique
circle through A, B, and C whose center is the intersection of the perpendicular
bisectors of the line segments AB, BC, and AC.

Proof. The set of points equally distant between two given points is the line
perpendicular to the line through the given points which passes through their
midpoint. Thus the center of the circle lies on this line, for each pair of points. �

Lemma 3. (Central Angle Theorem)
Let A, B, and C be points on a circle with center D. Then ∠ADB = 2∠ACB.

Proof. The triangles 4ADB, 4BDC, and 4CDA are isosceles. Let y = ACB
and 2x = ∠ADB. Now

180◦ = ∠CAB + ∠CBA+ ∠ACB

= (∠CAD + ∠DAB) + (∠CBD + ∠DBA) + (∠ACD + ∠DCB)

= (∠DAB + ∠DBA) + (∠CBD + ∠CAD) + (∠ACD + ∠DCB)

= (∠DAB + ∠DBA) + 2(∠ACD + ∠DCB)

= (180◦ − 2x) + 2y.

Thus 2y − 2x, so y = x. �

147
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Lemma 4. Let A and B be points and let M be the line through A and B. Let
L be a line which is not parallel to M and let S be the point of intersection of L
and M . Let T be a point on L. Then L is tangent to the circle through A, B,
and T if and only if ∠STA = ∠SBT .

Proof. Let x = ∠STA. Let N be the line through T and D. Then

C is tangent to L⇔ L ⊥ N

⇔ ∠STD = 90◦

⇔ ∠ATD = 90◦ − x

⇔ ∠ADT = 2x
⇔ ∠ABT = x.

�

Lemma 5. Let A and B be points and let M be the line through A and B. Let
L be a line which is not parallel to M and let S be the point of intersection of L
and M . Let T be a point on L. Then L is tangent to the circle through A, B,
and T if and only if

(SA)(SB) = (ST )2.

Proof. By the previous lemma, L is tangent to the circle if and only if 4AST ∼
4TSB, which is true if and only if

AS

ST
=
ST

SB
.

The result follows. �

Solution.
(a) Letting p mean point, l mean line, and c mean circle, there are ten cases:

ppp, ppl, pll, lll, ppc, pcc, ccc, llc, lcc, plc.

Type ppp has a unique solution; each of the other types has two solution in
general.

Two find the unique circle through three points, we take the center to be
the intersection of the perpendicular bisectors of the line segments between the
points. Thus, the other problems may be reduced to finding the points of tan-
gency on the given lines or circles.

(b) If the line through A and B is parallel to C, then there is a unique
solution. The point of tangency on C is obtained by intersecting C with the
perpendicular bisector of AB.

Otherwise, let S be the intersection of the line through A and B and the
line C. Let T be a point on C such that (ST )2 = (SA)(SB). Then T is a point
of tangency. There are two solutions (one on either side of S). The proof that
this is so follows.

(c) Let A be a point and let L and M be lines.
Let N be the line which bisects the angle between L and M . If L and M

happen to be parallel, let N be the midline. Reflect A through this line to obtain
a point B. This reduces this case to the previous case, except if A is on N .

If A is on N , construct the line through A perpendicular to N , and let E
be the point of intersection. Bisect the angle at E and let D be the point of
intersection of the bisecting line with N . The D is the center of the tangent circle
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(their are two solutions). To see this, construct the line through D perpendicular
to L and intersect it with L at point T . Then 4AED ∼= 4TED by AAS, so
AD = TD; this is the radius of the circle. �
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Problem 2. (6.15 Diophantus)
(a) About all we know of Diophantus’ personal life is contained in the

following summary of an epitaph given in the Greek Anthology: “Dio-
phantus passed 1

6 of his life in childhood, 1
12 in youth, and 1

7 more as a
bachelor. Five years after his marriage was born a son who died 4 years
before his father, at 1

2 his father’s [final] age.” How old was Diophantus
when he died?

(b) Solve the following problem, which appears in Diophantus’ Arithmetica
(Problem 17, Book I): Find 4 numbers, the sum of every arrangement
3 at a time being given; say 22, 24, 27, 20.

(c) Solve the following problem, also found in the Arithmetic (Problem 16,
Book VI): In the right triangle ABC, right angled at C, AD bisects
angle A. Find the set of smallest integers for AB, AD, AC, BD, DC
such that DC : CA : AD = 3 : 4 : 5.

Solution.
(a) Let x be the age of Diophantus at his death, and let y be the number of

years he lived after his marriage. Thus y = x− ( 1
6 + 1

12 + 1
7 )x. That is, y = 17

28x.
Also, the final age of his son is 1

2x = (y − 5− 4) = 17
28x− 9. Solving for x gives

x = 84.
(b) We could create a system of four linear equations in four variables and

solve it using matrix techniques; it is less computationally intense to proceed as
follows.

Let r, s, t, u be the given numbers and let a, b, c, d be the unknown numbers.
Let v be the sum of the given numbers, which we can compute up front, and let
e be the sum of the unknown numbers. Without loss of generality, assign

a = e− r, b = e− s, c = e− t, d = e− u.

Adding these equations gives e = 4e − v, so 3e = v. So, e = v
3 . From this,

produce a, b, c, d.
For example, if r = 22, s = 24, t = 27, and u = 20, we have v = 93, so

e = 31. Thus
a = 9, b = 7, c = 4, d = 11.

(c) Let θ = ∠CAD, so that 2θ = ∠CAB. We want tan θ = 3
4 . Then

tan 2θ =
2 tan θ

1− tan2 θ
=

24
7
.

Let CD = 3x so that CA = 4x. Let y = CB. Then

tan 2θ =
y

4x
=

24
7
.

We see that x must be a multiple of 7; trying x = 7, we have y = 96, and

(AB)2 = 282 + 962 = 42(72 + 242) = 42(252).

Thus x = 7 produces an integer hypotenuse, and

AB = 100, AD = 35, AC = 28, BD = 75, DC = 21.

�

Problem 3. Using straightedge and compass, construct an angle of 54◦. De-
scribe each step, discussing why your construction is effective.
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Solution. Construct a 72◦ angle as per previous instructions. The supplementary
angle is 108◦. Bisect this to obtain 54◦. �

Definition 6. Let m,n ∈ Z. The least common multiple of m and n is a positive
integer l ∈ Z such that

(a) m | l and n | l;
(b) m | k and n | k implies l | k.

Definition 7. Let n ∈ Z with n ≥ 2. Set Zn = {r ∈ Z | 0 ≤ r < n}. Define a
function

ρn : Z → Zn by ρn(a) = the remainder when a is divided by n.

We call ρ the residue map.

Definition 8. Let m,n ∈ Z with m ≥ 2, n ≥ 2. Define a function

σm,n : Zmn → Zm × Zn by σm,n(a) = (ρm(a), ρn(a)).

We call σ the joint residue map.

Problem 4. Let m,n ∈ Z with m ≥ 2 and n ≥ 2. Let d = gcd(m,n) and
l = lcm(m,n).

(a) Show that if d = 1, then σm,n is bijective.
(b) Show that if a ≡ b (mod l), then σm,n(a) = σm,n(b).

Proof. Fix m and n and let σ = σm,n. We note that |Zmn| = mn = |Zm × Zn|.
By a previous theorem, ρn(a) = ρn(b) if and only if a ≡ b (mod n).

(a) Let (a, b) ∈ Zm × Zn. Since gcd(m,n) = 1, the Chinese Remainder
Theorem tells us that there exists c ∈ Z such that a ≡ c (mod m) and b ≡
c (mod n), that is, ρm(c) = a and ρn(c) = b. Moreover, this c may be selected
so that 0 ≤ c < mn; select c from Zmn. Then σ(c) = (a, b), and σ is surjective.
A surjective function between finite sets of the same cardinality is necessarily
injective, so σ is bijective.

(b) Suppose k is a common multiple of m and n. Then there exist x, y ∈ Z
such that mx = k and ny = k.

We assume that a ≡ bg (mod k), so k | a− b, and a− b = kz for some z ∈ Z.
Thus a − b = mxz and a − b = nyz. Thus m | a − b and n | a − b. Therefore
a ≡ b (mod m) and a ≡ b (mod n). �



152 E. SOLUTIONS TO PROBLEMS

Problem 2. Compute the volume of a regular icosahedron inscribed in a sphere
of radius 1.

Solution. We proceed as follows.
(a) Find an icosahedron inscribed in a sphere.
(b) Find the area A of one face.
(c) Find the length h of the apothem (the distance from the center of the

sphere to the centroid of a face).
(d) The volume of the tetrahedron whose base is a face and whose apex is

the center of the sphere is 1
3Ah. There are 20 faces, so the volume I of

the entire icosahedron is 20Ah
3 .

(e) Find the radius r of the sphere.
(f) Find the volume V of the icosahedron inscribed in a unit sphere, which

is 20Ah
3r3 .

(a) Find an icosahedron. Let φ = 1+
√

5
2 . Then φ2 = φ− 1.

The twelve points (±φ,±1, 0), (±1, 0,±φ), (0,±φ,±1), form the vertices of
a regular icosahedron in R3.

(b) Find the area A of one face. Consider the face with vertices (φ,±1, 0)
and (1, 0, φ). The area of an equilateral triangle with edge length e is

A =
1
2
e(e sin 60◦) =

e2
√

3
4

.

The length of one side is distance between the first to vertices, which is

e =
√

(φ− φ)2 + (1− (−1))2 =
√

4 = 2.

Thus A =
√

3.
(c) Find the length h of the apothem. The center of the sphere is the ori-

gin. The centroid is the average of the coordinates of the vertices, which is
( 2φ+1

3 , 0, φ
3 ). The apothem is

h =
1
3

√
(2φ+ 1)2 + φ2.

We note that
2φ+ 1 = φ2 + φ = φ(φ+ 1) = φ3.

Thus
(2φ+ 1)2 + φ2 = 5φ2 + 4φ+ 1 = 3φ(2φ+ 1) = 3φ4.

Therefore

h =
1
3

√
3φ4 =

φ2

√
3
.

(d) Find the volume of the tetrahedron. We have

I =
20Ah

3
=

20(
√

3)(φ2/
√

3)
3

=
20φ2

3
.

(e) Find the radius of the sphere. This is the distance from the origin to a
vertex, say (1, 0, φ). We have

r =
√
φ2 + 1.

Thus

V =
20φ2

3
√

(φ2 + 1)3
.
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�

Problem 3. Consider the elliptic curve given by the equation

y2 = x3 − 12x+ 25.

Find as many rational points on this curve as you can, including all rational
points that lie on a horizontal tangent. Justify your answer.

Solution. An elliptic curve is the locus to an equation of the form y2 = f(x),
where f(x) is a cubic polynomial. Elliptic curves play a critical role in advanced
arithmetic geometry.

Let f(x) = x3− ax+ b; we investigate methods to find critical points on the
curve C : y2 = f(x).

If we find one rational point on C, then we can use it to reduce our (difficult)
cubic equation to a (tractable) quadratic equation; however, we have no guaran-
tee that this quadratic will yield rational results. On the other hand, if we have
a double rational zero or two rational zeros of a cubic equation, we can reduce
the quadratic to a linear equation, whose solution will necessarily be rational. Is
is the tactic employed by Diophantus.

Let (p, q) be a rational point on C. Implicit differentiation gives the slope
of the tangent line at this point to be

m =
3p2 − a

2q
.

The line through this point is

L : y = mx+ (q −mp).

We intersect the line L with the curve C.
Thus, for points on this line, we have y2 = m2x2 +2m(q−mp)x+(q−mp)2.

If g(x) = m2x2 + 2m(q −mp) + (q −mp)2, then f ′(p)− g′(p) = 0, so f − g has
a horizontal tangent at x = p; therefore, p is a double zero of f − g. In other
words, L intersects C is at most one point other than (p, q).

Let h(x) = f(x)−g(x) = x3−m2x2+(2m2p−2mq−a)+(b−(q−mp)2). We
divide h(x) by (x− p)2 (using synthetic division, we divide by p twice) and find
that the quotient is x+2p−m2. Therefore, x = m2−2p is another zero of h(x); it
is the x-coordinate of the other intersection point of L and C. The y-coordinate
is obtained by plugging x into the line L, and we get y = m(m2−2p)+(q−mp).
Thus, we have found another rational point:

By the tangent method: m =
3p2 − a

2q
giving (m2 − 2p,m3 − 3mp+ q).

Let (p1, q1) and (p2, q2) be rational points on C. Let

m =
q2 − q1
p2 − p1

.

Let L : y = mx+ (q1−mp1). Again intersect L with C to construct h as above,
and factor out (x−p1) and (x−p2). You will find that x = m2−p1−p2 is the x-
coordinate of the third point of intersection, and the corresponding y-coordinate
is m(x− p1) + q1.

By the secant method: m =
q2 − q1
p2 − p1

giving (m2−p1−p2,m
3−2mp1−p2 + q1).
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Of course, it is fruitless to attempt to use the secant method on a pair of points
where one has been derived from the other from the tangent method.

Now having developed these formulae, it was relatively easy to write a com-
puter program to guess easy integer solutions and search for additional rational
points using the tangent and secant method. The program first searches for solu-
tions for x between −9 and 9, then builds up a list of all points found from these
whose numerator and denominator have absolute value less than 10 million. �
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Here is the source listing for the program to find rational points on y2 =
x3 − ax+ b.

// Find rational points on elliptic curve y^2 = x^3 - ax + b

#include <stdio.h>
#include <math.h>
#include "Rational.h"

// Find rational points on elliptic curve y^2 = x^3 - ax + b

Rational points[100][2];
int pointc=1;

Integer abs(Integer p)
{ if (p<0) return -p;
return p; }

int find(Rational p)
{ int k=1;
while (k<pointc)
{ if (points[k][0] == p) return k;
k++; }

return 0; }

int check(Rational p)
{ if (abs(p.Getm())>10000000 || abs(p.Getn())>10000000) return 1;
return 0; }

int put(Rational p,Rational q)
{ if (pointc>98) return 1;
if (find(p)) return 2;
if (check(p)) return 3;
if (check(q)) return 4;
points[pointc][0] = p;
points[pointc][1] = q;
pointc++;
printf("(%s,%s)\n",p.String(),q.String());
return 0; }

int tangent(Rational a,Rational b,Rational p,Rational q)
{ Rational m,x,y;
m = (3*p*p - a)/(2*q);
x = m*m - 2*p;
y = m*(x-p)+q;
if (put(x,y)) return 0;
return 1; }

int secant(Rational a,Rational b,Rational p1,Rational q1,Rational p2,Rational q2)
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{ Rational m,x,y;
m = (q2-q1)/(p2-p1);
x = m*m - p1 - p2;
y = m*(x-p1)+q1;
if (put(x,y)) return 0;
return 1; }

int search(Rational a,Rational b)
{ int i=0,j=0,k=0;
Rational p1,q1,p2,q2,p,q;
for (i=1; i<pointc-1; i++)
{ for (j=i+1; j<pointc; j++)
{ p1 = points[i][0];
q1 = points[i][1];
p2 = points[j][0];
q2 = points[j][1];
k += secant(a,b,p1,q1,p2,q2); } }

for (i=1; i<pointc; i++)
{ p = points[i][0];
q = points[i][1];
k+= tangent(a,b,p,q); }

return k; }

void elliptic(Integer a,Integer b)
{ Integer x,y,z;
for (x=-9; x<=9; x++)
{ z = x*x*x - a*x + b;
y = squr(z);
if (y*y != z) continue;
put(x,y); }

while (search(a,b)); }

int main(int argc, char* argv[])
{ elliptic(12,25);
return 0; }
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The output of the program is a list of the rational points it found.

(-4,3)
(-1,6)
(0,5)
(2,3)
(3,4)
(6,13)
(8,21)
(17/4,57/8)
(50/49,1275/343)
(-7/4,51/8)
(-38/9,17/27)
(-157/49,1896/343)
(152/121,4593/1331)
(-26/9,161/27)
(14/25,537/125)
(116/49,1077/343)
(1911/361,71878/6859)
(1529/5776,2051571/438976)
(-159/64,3217/512)
(36/25,409/125)
(-3592/1681,-440691/68921)
(-13192/3721,1088151/226981)
(-3382/961,-144861/29791)
(-663/2116,-521717/97336)
(16409/4624,1636989/314432)
(8018/1681,601941/68921)
(208/9,2969/27)
(2922/169,155137/2197)
(7728/2809,532831/148877)
(41/16,213/64)
(3014/3721,902559/226981)
(275,-4560)
(-1954/3025,948219/166375)
(122,1347)
(276/169,6863/2197)
(10225/324,-1028105/5832)
(44,291)
(14,51)
(1271/361,35238/6859)
(1124/289,29949/4913)
(7952/841,-670983/24389)

Problem 4. (Fibonacci)
Recall that the Fibonacci sequence (Fn) is defined by F1 = 1, F2 = 1, and
Fn+2 = Fn + Fn+1, and that limn→∞

Fn+1
Fn

= φ, where φ = 1+
√

5
2 .

Let b ∈ R with b ≥ 1 and define a sequence (Gn) by G1 = 1, G2 = 1, and
Gn+2 = Gn + bGn+1.
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Let c ∈ R with c ≥ φ. Find b such that limn→∞
Gn+1
Gn

= c.

Solution. Let cn = Gn+1
Gn

. Then

cn+1 =
Gn+2

Gn+1
=
bGn+1 +Gn

Gn+1
= b+

1
cn
.

Now (cn) is a Cauchy sequence, so it converges; let L = lim cn. Since cn > 0 for
all n, L ≥ 0. Then L = b+ 1

L , so

L2 − bL− 1− 0.

Thus

L =
b+

√
b2 + 4
2

.

If L = c, then 2c = b+
√
b2 + 4, so (2c− b)2 = b2 + 4, so 4c2 − 4bc+ b2 = b2 + 4,

so

b =
c2 − 1
c

.

�

Problem 5. (Tartaglia)
Recall that Tartaglia viewed the cube x3 as (t − u)3 to find solutions to cubic
equations.

Let f(x) = x3 + 3x2 + 6x− 8. Find the real zero of f using Tartaglia’s cube
plus cosa method.

Solution. First we depress the cubic: let y = x+ 1 so that x = y − 1; then

f(x) = f(y − 1)

= (y − 1)3 + 3(y − 1)2 + 6(y − 1)− 8

= y3 − 3y2 + 3y − 1 + 3y2 − 6y + 3 + 6y − 6− 8

= y3 + 3y − 12.

We now solve y3 + 3y = 12. Set 3tu = 3 and t3 − u3 = 12, so that u = 1
t , and

t3 − 1
t3 = 12. Thus

t6 − 12t3 − 1 = 0.
By the quadratic formula,

t3 =
12 +

√
144 + 4
2

= 6 +
√

37.

Now u3 = t3 − 12 = −6 +
√

37. Thus

y = t− u =
3
√

6 +
√

37 +
3
√

6−
√

37.

Finally,

x =
3
√

6 +
√

37 +
3
√

6−
√

37− 1.

�
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Problem 6. (Descartes)
Recall that Descartes used the concept of expanding circles and the ability to
compute the number of real solutions to quadratic equations to find tangents.

Find the distance between the curve x = y2 and the point (3, 0) using
Descartes’ discriminant method.

Solution. A circle of radius r centered at (3, 0) has equation (x− 3)2 + y2 = r2.
The shortest distance to the curve is the radius of a tangential circle, which
occurs when then circle intersects the curve in exactly one point.

Intersecting the curve and the circle gives (x − 3)2 + x = r2, so x2 − 5x +

(9 − r2) = 0, so x = 5±
√

25−4(9−r2)

2 . This has exactly one solution when 25 =
4(9− r2), or r2 = 9− 25

4 = 11
4 . Thus the distance is

r =
√

11
2
.

�

Problem 7. (Napier)
Recall that Napier desired to find a function to convert multiplication into addi-
tion. We may use techniques of Calculus unavailable to him to see that he had
very little choice. The modern definition is

log x =
∫ x

1

dt

t
and logb(x) =

log x
log b

.

Let f : (0,∞) → R be a differentiable function which is not constantly zero
and satisfies

f(ab) = f(a) + f(b) for all a, b ∈ (0,∞).
Show that there exists b ∈ R such that f(x) = logb(x).

Solution. First, note that f(1) = f(1 · 1) = f(1) + f(1); thus f(1) = 0.
Fix t ∈ (0,∞); we have f(tx) = f(t) + f(x). Differentiating with respect

to x gives tf ′(tx) = f ′(x). In particular, if x = 1, we have tf ′(t) = f ′(1), so
f ′(t) = f ′(1)

t . This is true for all t ∈ R, so∫ x

1

f ′(t) dt =
∫ x

1

f ′(1)
t

dt.

By the Fundamental Theorem of Calculus,

f(x)− f(1) = f ′(1)
∫ x

1

dt

t
= f ′(1) log x.

Since f(1) = 0, f(x) = f ′(1) log x.
Suppose f ′(1) = 0; then tf ′(t) = 0, so f ′(t) = 0 for all t ∈ (0,∞), so f is

constant. But f(1) = 0, so f(x) = 0; this contradicts that f is nonzero. Thus
f ′(1) 6= 0.

Let b = e
1

f′(1) . Then f ′(1) = 1
log b , and f(x) = log x

log b ; that is,

f(x) = logb x where b = e
1

f′(1) .

�





APPENDIX F

Additional Material

1. Plimpton Tablet

n b c s | a u v t
----- ----- ----- -------- | ----- ----- ----- ---------

1 119 169 1.983403 | 120 12 5 44.760308
2 3367 4825 1.949159 | 3456 64 27 44.252707
3 4601 6649 1.918802 | 4800 75 32 43.787383
4 12709 18541 1.886248 | 13500 125 54 43.271348
5 65 97 1.815008 | 72 9 4 42.075058
6 319 481 1.785193 | 360 20 9 41.544544
7 2291 3541 1.719984 | 2700 54 25 40.315256
8 799 1249 1.692709 | 960 32 15 39.770364
9 481 769 1.642669 | 600 25 12 38.718021
10 4961 8161 1.586123 | 6480 81 40 37.437210
11 3 5 1.562500 | 4 2 1 36.869929
12 1679 2929 1.489417 | 2400 48 25 34.976024
13 161 289 1.450017 | 240 15 8 33.855055
14 1771 3229 1.430239 | 2700 50 27 33.261936
15 56 106 1.387160 | 90 9 5 31.890819

2. Euclid’s Definitions

Definitions

Definition 1.
A point is that which has no part.

Definition 2.
A line is breadthless length.

Definition 3.
The ends of a line are points.

Definition 4.
A straight line is a line which lies evenly with the points on
itself.

Definition 5.
A surface is that which has length and breadth only.

161



162 F. ADDITIONAL MATERIAL

Definition 6.
The edges of a surface are lines.

Definition 7.
A plane surface is a surface which lies evenly with the
straight lines on itself.

Definition 8.
A plane angle is the inclination to one another of two
lines in a plane which meet one another and do not lie
in a straight line.

Definition 9.
And when the lines containing the angle are straight, the
angle is called rectilinear.

Definition 10.
When a straight line standing on a straight line makes the
adjacent angles equal to one another, each of the equal angles
is right, and the straight line standing on the other is
called a perpendicular to that on which it stands.

Definition 11.
An obtuse angle is an angle greater than a right angle.

Definition 12.
An acute angle is an angle less than a right angle.

Definition 13.
A boundary is that which is an extremity of anything.

Definition 14.
A figure is that which is contained by any boundary or
boundaries.

Definition 15.
A circle is a plane figure contained by one line such that all
the straight lines falling upon it from one point among those
lying within the figure equal one another.

Definition 16.
And the point is called the center of the circle.

Definition 17.
A diameter of the circle is any straight line drawn through
the center and terminated in both directions by the
circumference of the circle, and such a straight line also
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bisects the circle.

Definition 18.
A semicircle is the figure contained by the diameter and the
circumference cut off by it. And the center of the semicircle
is the same as that of the circle.

Definition 19.
Rectilinear figures are those which are contained by straight
lines, trilateral figures being those contained by three,
quadrilateral those contained by four, and multilateral those
contained by more than four straight lines.

Definition 20.
Of trilateral figures, an equilateral triangle is that which
has its three sides equal, an isosceles triangle that which
has two of its sides alone equal, and a scalene triangle that
which has its three sides unequal.

Definition 21.
Further, of trilateral figures, a right-angled triangle is
that which has a right angle, an obtuse-angled triangle that
which has an obtuse angle, and an acute-angled triangle that
which has its three angles acute.

Definition 22.
Of quadrilateral figures, a square is that which is both
equilateral and right-angled; an oblong that which is
right-angled but not equilateral; a rhombus that which is
equilateral but not right-angled; and a rhomboid that which
has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals
other than these be called trapezia.

Definition 23
Parallel straight lines are straight lines which, being in the
same plane and being produced indefinitely in both directions,
do not meet one another in either direction.

Postulates

Postulate 1.
To draw a straight line from any point to any point.

Postulate 2.
To produce a finite straight line continuously in a straight
line.
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Postulate 3.
To describe a circle with any center and radius.

Postulate 4.
That all right angles equal one another.

Postulate 5.
That, if a straight line falling on two straight lines makes
the interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely,
meet on that side on which are the angles less than the two
right angles.

Common Notions

Common notion 1.
Things which equal the same thing also equal one another.

Common notion 2.
If equals are added to equals, then the wholes are equal.

Common notion 3.
If equals are subtracted from equals, then the remainders are
equal.

Common notion 4.
Things which coincide with one another equal one another.

Common notion 5.
The whole is greater than the part.

Propositions

Proposition 1.
To construct an equilateral triangle on a given finite
straight line.

Proposition 2.
To place a straight line equal to a given straight line
with one end at a given point.

Proposition 3.
To cut off from the greater of two given unequal straight
lines a straight line equal to the less.

Proposition 4.
If two triangles have two sides equal to two sides
respectively, and have the angles contained by the equal
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straight lines equal, then they also have the base equal to
the base, the triangle equals the triangle, and the remaining
angles equal the remaining angles respectively, namely those
opposite the equal sides.

Proposition 5.
In isosceles triangles the angles at the base equal one
another, and, if the equal straight lines are produced
further, then the angles under the base equal one another.

Proposition 6.
If in a triangle two angles equal one another, then the sides
opposite the equal angles also equal one another.

Proposition 7.
Given two straight lines constructed from the ends of a
straight line and meeting in a point, there cannot be
constructed from the ends of the same straight line, and on
the same side of it, two other straight lines meeting in
another point and equal to the former two respectively,
namely each equal to that from the same end.

Proposition 8.
If two triangles have the two sides equal to two sides
respectively, and also have the base equal to the base, then
they also have the angles equal which are contained by the
equal straight lines.

Proposition 9.
To bisect a given rectilinear angle.

Proposition 10.
To bisect a given finite straight line.

Proposition 11.
To draw a straight line at right angles to a given straight
line from a given point on it.

Proposition 12.
To draw a straight line perpendicular to a given infinite
straight line from a given point not on it.

Proposition 13.
If a straight line stands on a straight line, then it makes
either two right angles or angles whose sum equals two right
angles.

Proposition 14.
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If with any straight line, and at a point on it, two straight
lines not lying on the same side make the sum of the adjacent
angles equal to two right angles, then the two straight lines
are in a straight line with one another.

Proposition 15.
If two straight lines cut one another, then they make the
vertical angles equal to one another.

Corollary. If two straight lines cut one another, then they
will make the angles at the point of section equal to four
right angles.

Proposition 16.
In any triangle, if one of the sides is produced, then the
exterior angle is greater than either of the interior and
opposite angles.

Proposition 17.
In any triangle the sum of any two angles is less than two
right angles.

Proposition 18.
In any triangle the angle opposite the greater side is
greater.

Proposition 19.
In any triangle the side opposite the greater angle is
greater.

Proposition 20.
In any triangle the sum of any two sides is greater than
the remaining one.

Proposition 21.
If from the ends of one of the sides of a triangle two
straight lines are constructed meeting within the triangle,
then the sum of the straight lines so constructed is less
than the sum of the remaining two sides of the triangle,
but the constructed straight lines contain a greater angle
than the angle contained by the remaining two sides.

Proposition 22.
To construct a triangle out of three straight lines which
equal three given straight lines: thus it is necessary that
the sum of any two of the straight lines should be greater
than the remaining one.
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Proposition 23.
To construct a rectilinear angle equal to a given rectilinear
angle on a given straight line and at a point on it.

Proposition 24.
If two triangles have two sides equal to two sides
respectively, but have one of the angles contained by the
equal straight lines greater than the other, then they also
have the base greater than the base.

Proposition 25.
If two triangles have two sides equal to two sides
respectively, but have the base greater than the base, then
they also have the one of the angles contained by the equal
straight lines greater than the other.

Proposition 26.
If two triangles have two angles equal to two angles
respectively, and one side equal to one side, namely, either
the side adjoining the equal angles, or that opposite one of
the equal angles, then the remaining sides equal the remaining
sides and the remaining angle equals the remaining angle.

Proposition 27.
If a straight line falling on two straight lines makes the
alternate angles equal to one another, then the straight lines
are parallel to one another.

Proposition 28.
If a straight line falling on two straight lines makes the
exterior angle equal to the interior and opposite angle on the
same side, or the sum of the interior angles on the same side
equal to two right angles, then the straight lines are
parallel to one another.

Proposition 29.
A straight line falling on parallel straight lines makes the
alternate angles equal to one another, the exterior angle
equal to the interior and opposite angle, and the sum of the
interior angles on the same side equal to two right angles.

Proposition 30.
Straight lines parallel to the same straight line are also
parallel to one another.

Proposition 31.
To draw a straight line through a given point parallel to a
given straight line.
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Proposition 32.
In any triangle, if one of the sides is produced, then the
exterior angle equals the sum of the two interior and opposite
angles, and the sum of the three interior angles of the
triangle equals two right angles.

Proposition 33.
Straight lines which join the ends of equal and parallel
straight lines in the same directions are themselves equal
and parallel.

Proposition 34.
In parallelogrammic areas the opposite sides and angles equal
one another, and the diameter bisects the areas.

Proposition 35.
Parallelograms which are on the same base and in the same
parallels equal one another.

Proposition 36.
Parallelograms which are on equal bases and in the same
parallels equal one another.

Proposition 37.
Triangles which are on the same base and in the same parallels
equal one another.

Proposition 38.
Triangles which are on equal bases and in the same parallels
equal one another.

Proposition 39.
Equal triangles which are on the same base and on the same
side are also in the same parallels.

Proposition 40.
Equal triangles which are on equal bases and on the same side
are also in the same parallels.

Proposition 41.
If a parallelogram has the same base with a triangle and is in
the same parallels, then the parallelogram is double the
triangle.

Proposition 42.
To construct a parallelogram equal to a given triangle in a
given rectilinear angle.
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Proposition 43.
In any parallelogram the complements of the parallelograms
about the diameter equal one another.

Proposition 44.
To a given straight line in a given rectilinear angle, to
apply a parallelogram equal to a given triangle.

Proposition 45.
To construct a parallelogram equal to a given rectilinear
figure in a given rectilinear angle.

Proposition 46.
To describe a square on a given straight line.

Proposition 47.
In right-angled triangles the square on the side opposite the
right angle equals the sum of the squares on the sides
containing the right angle.

Proposition 48.
If in a triangle the square on one of the sides equals the sum
of the squares on the remaining two sides of the triangle,
then the angle contained by the remaining two sides of the
triangle is right.

3. Eudoxus Theory of Proportion Definition

Eudoxus invented the ”theory of proportion”; this is the definition for Eu-
clid’s Elements:

Def. 5. Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever are taken of the
first and third, and any equimultiples whatever of the second and fourth, the
former equimultiples alike exceed, are alike equal to, or alike fall short of, the
latter equimultiples respectively taken in corresponding order.

http://www.mathcs.clarku.edu/ djoyce/java/elements/bookV/defV5.html
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